forked from PaddlePaddle/PaddleDetection
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathinfer.py
262 lines (220 loc) · 9.01 KB
/
infer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import os, sys
# add python path of PadleDetection to sys.path
parent_path = os.path.abspath(os.path.join(__file__, *(['..'] * 2)))
if parent_path not in sys.path:
sys.path.append(parent_path)
import glob
import numpy as np
from PIL import Image
from paddle import fluid
from paddleslim.prune import Pruner
from paddleslim.analysis import flops
from ppdet.core.workspace import load_config, merge_config, create
from ppdet.utils.eval_utils import parse_fetches
from ppdet.utils.cli import ArgsParser
from ppdet.utils.check import check_gpu, check_version, check_config
from ppdet.utils.visualizer import visualize_results
import ppdet.utils.checkpoint as checkpoint
from ppdet.data.reader import create_reader
import logging
FORMAT = '%(asctime)s-%(levelname)s: %(message)s'
logging.basicConfig(level=logging.INFO, format=FORMAT)
logger = logging.getLogger(__name__)
def get_save_image_name(output_dir, image_path):
"""
Get save image name from source image path.
"""
if not os.path.exists(output_dir):
os.makedirs(output_dir)
image_name = os.path.split(image_path)[-1]
name, ext = os.path.splitext(image_name)
return os.path.join(output_dir, "{}".format(name)) + ext
def get_test_images(infer_dir, infer_img):
"""
Get image path list in TEST mode
"""
assert infer_img is not None or infer_dir is not None, \
"--infer_img or --infer_dir should be set"
assert infer_img is None or os.path.isfile(infer_img), \
"{} is not a file".format(infer_img)
assert infer_dir is None or os.path.isdir(infer_dir), \
"{} is not a directory".format(infer_dir)
# infer_img has a higher priority
if infer_img and os.path.isfile(infer_img):
return [infer_img]
images = set()
infer_dir = os.path.abspath(infer_dir)
assert os.path.isdir(infer_dir), \
"infer_dir {} is not a directory".format(infer_dir)
exts = ['jpg', 'jpeg', 'png', 'bmp']
exts += [ext.upper() for ext in exts]
for ext in exts:
images.update(glob.glob('{}/*.{}'.format(infer_dir, ext)))
images = list(images)
assert len(images) > 0, "no image found in {}".format(infer_dir)
logger.info("Found {} inference images in total.".format(len(images)))
return images
def main():
cfg = load_config(FLAGS.config)
merge_config(FLAGS.opt)
check_config(cfg)
# check if set use_gpu=True in paddlepaddle cpu version
check_gpu(cfg.use_gpu)
# check if paddlepaddle version is satisfied
check_version()
main_arch = cfg.architecture
dataset = cfg.TestReader['dataset']
test_images = get_test_images(FLAGS.infer_dir, FLAGS.infer_img)
dataset.set_images(test_images)
place = fluid.CUDAPlace(0) if cfg.use_gpu else fluid.CPUPlace()
exe = fluid.Executor(place)
model = create(main_arch)
startup_prog = fluid.Program()
infer_prog = fluid.Program()
with fluid.program_guard(infer_prog, startup_prog):
with fluid.unique_name.guard():
inputs_def = cfg['TestReader']['inputs_def']
inputs_def['iterable'] = True
feed_vars, loader = model.build_inputs(**inputs_def)
test_fetches = model.test(feed_vars)
infer_prog = infer_prog.clone(True)
pruned_params = FLAGS.pruned_params
assert (
FLAGS.pruned_params is not None
), "FLAGS.pruned_params is empty!!! Please set it by '--pruned_params' option."
pruned_params = FLAGS.pruned_params.strip().split(",")
logger.info("pruned params: {}".format(pruned_params))
pruned_ratios = [float(n) for n in FLAGS.pruned_ratios.strip().split(",")]
logger.info("pruned ratios: {}".format(pruned_ratios))
assert (len(pruned_params) == len(pruned_ratios)
), "The length of pruned params and pruned ratios should be equal."
assert (pruned_ratios > [0] * len(pruned_ratios) and
pruned_ratios < [1] * len(pruned_ratios)
), "The elements of pruned ratios should be in range (0, 1)."
base_flops = flops(infer_prog)
pruner = Pruner()
infer_prog, _, _ = pruner.prune(
infer_prog,
fluid.global_scope(),
params=pruned_params,
ratios=pruned_ratios,
place=place,
only_graph=True)
pruned_flops = flops(infer_prog)
logger.info("pruned FLOPS: {}".format(
float(base_flops - pruned_flops) / base_flops))
reader = create_reader(cfg.TestReader, devices_num=1)
loader.set_sample_list_generator(reader, place)
exe.run(startup_prog)
if cfg.weights:
checkpoint.load_checkpoint(exe, infer_prog, cfg.weights)
# parse infer fetches
assert cfg.metric in ['COCO', 'VOC', 'OID', 'WIDERFACE'], \
"unknown metric type {}".format(cfg.metric)
extra_keys = []
if cfg['metric'] in ['COCO', 'OID']:
extra_keys = ['im_info', 'im_id', 'im_shape']
if cfg['metric'] == 'VOC' or cfg['metric'] == 'WIDERFACE':
extra_keys = ['im_id', 'im_shape']
keys, values, _ = parse_fetches(test_fetches, infer_prog, extra_keys)
# parse dataset category
if cfg.metric == 'COCO':
from ppdet.utils.coco_eval import bbox2out, mask2out, get_category_info
if cfg.metric == 'OID':
from ppdet.utils.oid_eval import bbox2out, get_category_info
if cfg.metric == "VOC":
from ppdet.utils.voc_eval import bbox2out, get_category_info
if cfg.metric == "WIDERFACE":
from ppdet.utils.widerface_eval_utils import bbox2out, get_category_info
anno_file = dataset.get_anno()
with_background = dataset.with_background
use_default_label = dataset.use_default_label
clsid2catid, catid2name = get_category_info(anno_file, with_background,
use_default_label)
# whether output bbox is normalized in model output layer
is_bbox_normalized = False
if hasattr(model, 'is_bbox_normalized') and \
callable(model.is_bbox_normalized):
is_bbox_normalized = model.is_bbox_normalized()
imid2path = dataset.get_imid2path()
for iter_id, data in enumerate(loader()):
outs = exe.run(infer_prog,
feed=data,
fetch_list=values,
return_numpy=False)
res = {
k: (np.array(v), v.recursive_sequence_lengths())
for k, v in zip(keys, outs)
}
logger.info('Infer iter {}'.format(iter_id))
bbox_results = None
mask_results = None
if 'bbox' in res:
bbox_results = bbox2out([res], clsid2catid, is_bbox_normalized)
if 'mask' in res:
mask_results = mask2out([res], clsid2catid,
model.mask_head.resolution)
# visualize result
im_ids = res['im_id'][0]
for im_id in im_ids:
image_path = imid2path[int(im_id)]
image = Image.open(image_path).convert('RGB')
image = visualize_results(image,
int(im_id), catid2name,
FLAGS.draw_threshold, bbox_results,
mask_results)
save_name = get_save_image_name(FLAGS.output_dir, image_path)
logger.info("Detection bbox results save in {}".format(save_name))
image.save(save_name, quality=95)
if __name__ == '__main__':
parser = ArgsParser()
parser.add_argument(
"--infer_dir",
type=str,
default=None,
help="Directory for images to perform inference on.")
parser.add_argument(
"--infer_img",
type=str,
default=None,
help="Image path, has higher priority over --infer_dir")
parser.add_argument(
"--output_dir",
type=str,
default="output",
help="Directory for storing the output visualization files.")
parser.add_argument(
"--draw_threshold",
type=float,
default=0.5,
help="Threshold to reserve the result for visualization.")
parser.add_argument(
"-p",
"--pruned_params",
default=None,
type=str,
help="The parameters to be pruned when calculating sensitivities.")
parser.add_argument(
"--pruned_ratios",
default=None,
type=str,
help="The ratios pruned iteratively for each parameter when calculating sensitivities."
)
FLAGS = parser.parse_args()
main()