forked from xialuxi/arcface-caffe
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmtcnn.py
417 lines (333 loc) · 14.1 KB
/
mtcnn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
#coding=utf-8
import sys
sys.path.insert(0,'/home/xia/Downloads/py-faster-rcnn/caffe-fast-rcnn/python')
import caffe
import cv2
import os
import numpy as np
import math
import copy
std_mean = 127.5
std_scale = 0.0078125
batchsize = 128
factor = 0.709
minisize = 30
#pnet
pnet_stride = 2
pnet_cell_size = 12
pnet_thread = 0.95
#rnet
rnet_thread = 0.95
#onet
onet_thread = 0.95
def Align_sphereface(input_image, points, output_size = (96, 112)):
image = copy.deepcopy(input_image)
src = np.matrix([[points[0], points[2], points[4], points[6], points[8]],
[points[1], points[3], points[5], points[7], points[9]], [1, 1, 1, 1, 1]])
dst = np.matrix([ [30.2946, 65.5318, 48.0252, 33.5493, 62.7299],
[51.6963, 51.5014, 71.7366, 92.3655, 92.2041] ])
T = (src * src.T).I * src * dst.T
img_affine = cv2.warpAffine(image, T.T, output_size)
return img_affine
def Align_seqface(input_image, points, output_size = (128, 128)):
image = copy.deepcopy(input_image)
eye_center_x = (points[0] + points[2]) * 0.5
eye_center_y = (points[1] + points[3]) * 0.5
mouse_center_x = (points[6] + points[8]) * 0.5
mouse_center_y = (points[7] + points[9]) * 0.5
rad_tan = 1.0 * (points[3] - points[1]) / (points[2] - points[0])
rad = math.atan(rad_tan)
deg = np.rad2deg(rad)
width = int(math.fabs(math.sin(rad)) * image.shape[0] + math.fabs(math.cos(rad)) * image.shape[1])
height = int(math.fabs(math.cos(rad)) * image.shape[0] + math.fabs(math.sin(rad)) * image.shape[1])
transformMat = cv2.getRotationMatrix2D((eye_center_x, eye_center_y), deg, 1.0)
dst = cv2.warpAffine(image, transformMat, (width, height))
diff_x = mouse_center_x - eye_center_x
diff_y = mouse_center_y - eye_center_y
r_mouse_center_y = diff_y * float(math.cos(rad)) - diff_x * float(math.sin(rad)) + eye_center_y
d = r_mouse_center_y - eye_center_y + 1
dx = int(d * 3 / 2.0)
dy = int(d * 3 / 3.0)
x0 = int(eye_center_x) - dx
x0 = max(x0, 0)
x1 = int(eye_center_x + (3*d - dx)) - 1
x1 = min(x1, width-1)
y0 = int(eye_center_y) - dy
y0 = max(y0, 0)
y1 = int(eye_center_y + (3*d - dy)) - 1
y1 = min(y1, height-1)
alignface = dst[y0:y1, x0:x1, :]
alignface = cv2.resize(alignface, (128,128))
return alignface
def CalScale(width, height):
scales = []
scale = 12.0 / minisize
minWH = min(height, width) * scale;
while minWH >= 12.0:
scales.append(scale)
minWH *= factor
scale *= factor
return scales
def BBoxRegression(results):
for result in results:
box = result['faceBox']
bbox_reg = result['bbox_reg']
w = box[2] - box[0] + 1
h = box[3] - box[1] + 1
box[0] += bbox_reg[0] * w
box[1] += bbox_reg[1] * h
box[2] += bbox_reg[2] * w
box[3] += bbox_reg[3] * h
return results
def BBoxPad(results, width, height):
for result in results:
box = result['faceBox']
box[0] = round(max(box[0], 0.0))
box[1] = round(max(box[1], 0.0))
box[2] = round(min(box[2], width - 1.0))
box[3] = round(min(box[3], height - 1.0))
return results
def BBoxPadSquare(results, width, height):
for result in results:
box = result['faceBox']
w = box[2] - box[0] + 1;
h = box[3] - box[1] + 1;
side = max(w, h)
box[0] = round(max(box[0] + (w - side) * 0.5, 0))
box[1] = round(max(box[1] + (h - side) * 0.5, 0.))
box[2] = round(min(box[0] + side - 1.0, width - 1.0))
box[3] = round(min(box[1] + side - 1.0, height - 1.0))
return results
def NMS(results, thresh, methodType):
bboxes_nms = []
if len(results) == 0:
return bboxes_nms
else:
results = sorted(results, key=lambda result: result['bbox_score'], reverse=True)
flag = np.zeros_like(results)
for index, result_i in enumerate(results):
if flag[index] == 0:
box_i = result_i['faceBox']
area1 = (box_i[2] - box_i[0] + 1) * (box_i[3] - box_i[1] + 1)
bboxes_nms.append(result_i)
flag[index] = 1
for j, result_j in enumerate(results):
if flag[j] == 0:
box_j = result_j['faceBox']
area_intersect = (min(box_i[2], box_j[2]) - max(box_i[0], box_j[0]) + 1) * \
(min(box_i[3], box_j[3]) - max(box_i[1], box_j[1]) + 1)
if min(box_i[2], box_j[2]) - max(box_i[0], box_j[0]) < 0:
area_intersect = 0.0
area2 = (box_j[2] - box_j[0] + 1) * (box_j[3] - box_j[1] + 1)
iou = 0
if methodType == 'u':
iou = (area_intersect) * 1.0 / (area1 + area2 - area_intersect)
if methodType == 'm':
iou = (area_intersect) * 1.0 / min(area1, area2)
if iou > thresh:
flag[j] = 1
return bboxes_nms
def GenerateBBox(confidence, reg, scale, threshold):
ch, hs, ws = confidence.shape
results = []
for i in range(hs):
for j in range(ws):
if confidence[1][i][j] > threshold:
result = {}
box = []
box.append(j * pnet_stride / scale) # xmin
box.append(i * pnet_stride / scale) # ymin
box.append((j * pnet_stride + pnet_cell_size - 1.0) / scale) # xmax
box.append((i * pnet_stride + pnet_cell_size - 1.0) / scale) # ymax
result['faceBox'] = box
b_reg = []
for k in range(reg.shape[0]):
b_reg.append(reg[k][i][j])
result['bbox_reg'] = b_reg
result['bbox_score'] = confidence[1][i][j]
results.append(result)
return results
def GetResult_net12(pnet, image ):
image = (image.copy() - std_mean) * std_scale
rows, cols, channels = image.shape
scales = CalScale(cols, rows)
results = []
for scale in scales:
ws = int(math.ceil(cols * scale))
hs = int(math.ceil(rows * scale))
scale_img = cv2.resize(image, (ws, hs), cv2.INTER_CUBIC)
tempimg = np.zeros((1, hs, ws, 3))
tempimg[0, :, :, :] = scale_img
tempimg = tempimg.transpose(0, 3, 1, 2)
pnet.blobs['data'].reshape(1, 3, hs, ws)
pnet.blobs['data'].data[...] = tempimg
pnet.forward()
confidence = copy.deepcopy(pnet.blobs['prob1'].data[0])
reg = copy.deepcopy(pnet.blobs['conv4-2'].data[0])
result = GenerateBBox(confidence, reg, scale, pnet_thread)
results.extend(result)
res_boxes = NMS(results,0.7 ,'u')
res_boxes = BBoxRegression(res_boxes)
res_boxes = BBoxPadSquare(res_boxes, cols, rows)
return res_boxes
def GetResult_net24(rnet, res_boxes, image):
image = (image.copy() - std_mean) * std_scale
lenth = len(res_boxes)
num = int(math.floor(lenth * 1.0 / batchsize))
rnet.blobs['data'].reshape(batchsize, 3, 24, 24)
results = []
if len(res_boxes) == 0:
return results
for i in range(num):
tempimg = np.zeros((batchsize, 24, 24, 3))
for j in range(batchsize):
box = res_boxes[i * batchsize + j]['faceBox']
roi = copy.deepcopy(image[int(box[1]): int(box[3]), int(box[0]):int(box[2])])
scale_img = cv2.resize(roi, (24, 24))
tempimg[j,:,:,:] = scale_img
tempimg = tempimg.transpose(0, 3, 1, 2)
rnet.blobs['data'].data[...] = tempimg
rnet.forward()
confidence = copy.deepcopy(rnet.blobs['prob1'].data[...])
reg = copy.deepcopy(rnet.blobs['conv5-2'].data[...])
for j in range(batchsize):
result = {}
result['faceBox'] = res_boxes[i * batchsize + j]['faceBox']
b_reg = []
for k in range(reg.shape[1]):
b_reg.append(reg[j][k])
result['bbox_reg'] = b_reg
result['bbox_score'] = confidence[j][1]
if confidence[j][1] > onet_thread:
results.append(result)
resnum = lenth - num * batchsize
if resnum > 0:
rnet.blobs['data'].reshape(resnum, 3, 24, 24)
tempimg = np.zeros((resnum, 24, 24, 3))
for i in range(resnum):
box = res_boxes[num * batchsize + i]['faceBox']
roi = copy.deepcopy(image[int(box[1]): int(box[3]), int(box[0]):int(box[2])])
scale_img = cv2.resize(roi, (24, 24))
tempimg[i, :, :, :] = scale_img
tempimg = tempimg.transpose(0, 3, 1, 2)
rnet.blobs['data'].data[...] = tempimg
rnet.forward()
confidence = copy.deepcopy(rnet.blobs['prob1'].data[...])
reg = copy.deepcopy(rnet.blobs['conv5-2'].data[...])
for i in range(resnum):
result = {}
result['faceBox'] = res_boxes[num * batchsize + i]['faceBox']
b_reg = []
for k in range(reg.shape[1]):
b_reg.append(reg[i][k])
result['bbox_reg'] = b_reg
result['bbox_score'] = confidence[i][1]
if confidence[i][1] > rnet_thread:
results.append(result)
res_boxes = NMS(results, 0.7, 'u')
res_boxes = BBoxRegression(res_boxes)
res_boxes = BBoxPadSquare(res_boxes, image.shape[1], image.shape[0])
return res_boxes
def GetResult_net48(onet, res_boxes, image):
image = (image.copy() - std_mean) * std_scale
lenth = len(res_boxes)
num = int(math.floor(lenth * 1.0 / batchsize))
onet.blobs['data'].reshape(batchsize, 3, 48, 48)
results = []
if len(res_boxes) == 0:
return results
for i in range(num):
tempimg = np.zeros((batchsize, 48, 48, 3))
for j in range(batchsize):
box = res_boxes[i * batchsize + j]['faceBox']
roi = copy.deepcopy(image[int(box[1]): int(box[3]), int(box[0]):int(box[2])])
scale_img = cv2.resize(roi, (48, 48))
tempimg[j,:,:,:] = scale_img
tempimg = tempimg.transpose(0, 3, 1, 2)
onet.blobs['data'].data[...] = tempimg
onet.forward()
confidence = copy.deepcopy(onet.blobs['prob1'].data[...])
reg = copy.deepcopy(onet.blobs['conv6-2'].data[...])
reg_landmark = copy.deepcopy(onet.blobs["conv6-3"].data[...])
for j in range(batchsize):
result = {}
result['faceBox'] = res_boxes[i * batchsize + j]['faceBox']
b_reg = []
for k in range(reg.shape[1]):
b_reg.append(reg[j][k])
result['bbox_reg'] = b_reg
result['bbox_score'] = confidence[j][1]
w = result['faceBox'][2] - result['faceBox'][0] + 1
h = result['faceBox'][3] - result['faceBox'][1] + 1
l_reg = []
for l in range(5):
l_reg.append(reg_landmark[j][2 * l] * w + result['faceBox'][0])
l_reg.append(reg_landmark[j][2 * l + 1] * h + result['faceBox'][1])
result['landmark_reg'] = l_reg
if confidence[j][1] > onet_thread:
results.append(result)
resnum = lenth - num * batchsize
if resnum > 0:
onet.blobs['data'].reshape(resnum, 3, 48, 48)
tempimg = np.zeros((resnum, 48, 48, 3))
for i in range(resnum):
box = res_boxes[num * batchsize + i]['faceBox']
roi = copy.deepcopy(image[int(box[1]): int(box[3]), int(box[0]):int(box[2])].copy())
scale_img = cv2.resize(roi, (48, 48))
tempimg[i, :, :, :] = scale_img
tempimg = tempimg.transpose(0, 3, 1, 2)
onet.blobs['data'].data[...] = tempimg
onet.forward()
confidence = copy.deepcopy(onet.blobs['prob1'].data[...])
reg = copy.deepcopy(onet.blobs['conv6-2'].data[...])
reg_landmark = copy.deepcopy(onet.blobs["conv6-3"].data[...])
for i in range(resnum):
result = {}
result['faceBox'] = res_boxes[num * batchsize + i]['faceBox']
b_reg = []
for k in range(reg.shape[1]):
b_reg.append(reg[i][k])
result['bbox_reg'] = b_reg
result['bbox_score'] = confidence[i][1]
w = result['faceBox'][2] - result['faceBox'][0] + 1
h = result['faceBox'][3] - result['faceBox'][1] + 1
l_reg = []
for k in range(int(reg_landmark.shape[1] / 2)):
l_reg.append(reg_landmark[i][2 * k] * w + result['faceBox'][0])
l_reg.append(reg_landmark[i][2 * k + 1] * h + result['faceBox'][1])
result['landmark_reg'] = l_reg
if confidence[i][1] > onet_thread:
results.append(result)
res_boxes = BBoxRegression(results)
res_boxes = NMS(res_boxes, 0.7, 'm')
res_boxes = BBoxPad(res_boxes, image.shape[1], image.shape[0])
return res_boxes
def DetImage(pnet, rnet, onet, image, show = False):
results = GetResult_net12(pnet, image)
rnet_re = GetResult_net24(rnet, results, image)
onet_re = GetResult_net48(onet, rnet_re, image)
faceboxs = []
for index, result in enumerate(onet_re):
facebox = {}
facebox['box'] = result['faceBox']
facebox['landmark'] = result['landmark_reg']
faceboxs.append(facebox)
if show:
cv2.rectangle(image, (int(facebox['box'][0]), int(facebox['box'][1])), (int(facebox['box'][2]), int(facebox['box'][3])),
(0, 0, 255), 1)
for i in range(5):
cv2.circle(image, (int(facebox['landmark'][2 * i]), int(facebox['landmark'][2 * i + 1])), 2, (55, 255, 155), -1)
if show:
cv2.imshow('', image)
cv2.waitKey(0)
return faceboxs
if __name__ == "__main__":
root = '/home/xia/newwork/FaceAndTrack/model/'
caffe.set_device(0)
caffe.set_mode_gpu()
pnet = caffe.Net(root + 'det1.prototxt', root + 'det1.caffemodel', caffe.TEST)
rnet = caffe.Net(root + 'det2.prototxt', root + 'det2.caffemodel', caffe.TEST)
onet = caffe.Net(root + 'det3.prototxt', root + 'det3.caffemodel', caffe.TEST)
image = cv2.imread('/home/xia/Pictures/timg02.jpeg')
results = DetImage(pnet, rnet, onet, image, False)
print 'results: ', results