-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathembeddings.py
138 lines (112 loc) · 4.82 KB
/
embeddings.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
import sys
import os
import time
import io
import logging
import h5py
import numpy as np
import tqdm
from litellm import embedding
from file_utils import read_text, chunk_text_by_sentences
logger = logging.getLogger()
def silent_call(func, *args, **kwargs):
original_stdout = sys.stdout
sys.stdout = io.StringIO()
try:
result = func(*args, **kwargs)
finally:
sys.stdout = original_stdout
return result
def get_vector_size(embed_model):
sample_embedding = embedding(
model="ollama/" + embed_model, input="Sample text")['data'][0]['embedding']
return len(sample_embedding)
def generate_embeddings(text, embed_model):
return silent_call(embedding, model="ollama/" + embed_model, input=text)['data'][0]['embedding']
def create_embeddings(config, files_to_process, embed_model, sentence_per_chunk_val, overlap_val):
embeddings_file = config['embeddings_file_path']
os.makedirs(os.path.dirname(embeddings_file), exist_ok=True)
embeddings_data = {}
start_time = time.time()
with h5py.File(embeddings_file, 'w') as f:
for file_name in tqdm(files_to_process, desc="Creating Embeddings", unit="file"):
file_path = os.path.join(config['rag_files_path'], file_name)
text = read_text(file_path)
chunks = silent_call(chunk_text_by_sentences, source_text=text, sentences_per_chunk=sentence_per_chunk_val,
overlap=overlap_val)
chunk_ids = []
contents = []
embeddings = []
for index, chunk in enumerate(chunks):
embed = generate_embeddings(chunk, embed_model)
chunk_ids.append(f"{file_name}_{index}")
contents.append(chunk)
embeddings.append(embed)
file_group = f.create_group(file_name)
file_group.create_dataset('chunk_ids', data=np.array(
chunk_ids, dtype=h5py.special_dtype(vlen=str)))
file_group.create_dataset('contents', data=np.array(
contents, dtype=h5py.special_dtype(vlen=str)))
file_group.create_dataset('embeddings', data=np.array(embeddings))
embeddings_data[file_name] = list(
zip(chunk_ids, contents, embeddings))
end_time = time.time()
embedding_generation_time = end_time - start_time
logger.info(
f"Embedding generation took {embedding_generation_time:.2f} seconds")
return embeddings_data
def load_embeddings(config, file_name=None):
try:
embeddings_file = config['embeddings_file_path']
except TypeError:
print("Config type:", type(config))
print("Config contents:", config)
raise
if not os.path.exists(embeddings_file):
raise FileNotFoundError(
f"Embeddings file not found: {embeddings_file}")
try:
with h5py.File(embeddings_file, 'r') as f:
if file_name:
# Load embeddings for a single file
if file_name not in f:
logger.warning(
f"File '{file_name}' not found in embeddings file. Available files: {list(f.keys())}")
return None
return load_file_embeddings(f[file_name])
else:
# Load embeddings for all files
embeddings_data = {}
for fname in f.keys():
embeddings_data[fname] = load_file_embeddings(f[fname])
return embeddings_data
except Exception as e:
logger.error(f"Error loading embeddings: {str(e)}")
return None
def load_file_embeddings(file_group):
chunk_ids = [chunk_id.decode('utf-8')
for chunk_id in file_group['chunk_ids'][:]]
contents = [content.decode('utf-8')
for content in file_group['contents'][:]]
embeddings = file_group['embeddings'][:]
return list(zip(chunk_ids, contents, embeddings))
def insert_embeddings(client, collection_name, file_name, config):
logger.info(f"Inserting embeddings for file: {file_name}")
start_time = time.time()
embeddings_data = load_embeddings(config, file_name)
end_time = time.time()
embedding_loading_time = end_time - start_time
logger.info(
f"Embedding loading for {file_name} took {embedding_loading_time:.2f} seconds")
if embeddings_data is None:
logger.warning(f"Skipping insertion for file: {file_name}")
return
start_time = time.time()
for chunk_id, content, embed in embeddings_data:
meta = {"filename": file_name,
"chunk_id": chunk_id, "content": content}
client.insert_single(collection_name, embed, meta)
end_time = time.time()
vector_insertion_time = end_time - start_time
logger.info(
f"Vector insertion for {file_name} took {vector_insertion_time:.2f} seconds")