-
Notifications
You must be signed in to change notification settings - Fork 290
/
Copy pathface_detect.py
executable file
·89 lines (80 loc) · 3.28 KB
/
face_detect.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
# MIT License
# Copyright (c) 2019-2022 JetsonHacks
# See LICENSE for OpenCV license and additional information
# https://docs.opencv.org/3.3.1/d7/d8b/tutorial_py_face_detection.html
# On the Jetson Nano, OpenCV comes preinstalled
# Data files are in /usr/sharc/OpenCV
import cv2
# gstreamer_pipeline returns a GStreamer pipeline for capturing from the CSI camera
# Defaults to 1920x1080 @ 30fps
# Flip the image by setting the flip_method (most common values: 0 and 2)
# display_width and display_height determine the size of the window on the screen
# Notice that we drop frames if we fall outside the processing time in the appsink element
def gstreamer_pipeline(
capture_width=1920,
capture_height=1080,
display_width=960,
display_height=540,
framerate=30,
flip_method=0,
):
return (
"nvarguscamerasrc ! "
"video/x-raw(memory:NVMM), "
"width=(int)%d, height=(int)%d, framerate=(fraction)%d/1 ! "
"nvvidconv flip-method=%d ! "
"video/x-raw, width=(int)%d, height=(int)%d, format=(string)BGRx ! "
"videoconvert ! "
"video/x-raw, format=(string)BGR ! appsink drop=True"
% (
capture_width,
capture_height,
framerate,
flip_method,
display_width,
display_height,
)
)
def face_detect():
window_title = "Face Detect"
face_cascade = cv2.CascadeClassifier(
"/usr/share/opencv4/haarcascades/haarcascade_frontalface_default.xml"
)
eye_cascade = cv2.CascadeClassifier(
"/usr/share/opencv4/haarcascades/haarcascade_eye.xml"
)
video_capture = cv2.VideoCapture(gstreamer_pipeline(), cv2.CAP_GSTREAMER)
if video_capture.isOpened():
try:
cv2.namedWindow(window_title, cv2.WINDOW_AUTOSIZE)
while True:
ret, frame = video_capture.read()
gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
faces = face_cascade.detectMultiScale(gray, 1.3, 5)
for (x, y, w, h) in faces:
cv2.rectangle(frame, (x, y), (x + w, y + h), (255, 0, 0), 2)
roi_gray = gray[y : y + h, x : x + w]
roi_color = frame[y : y + h, x : x + w]
eyes = eye_cascade.detectMultiScale(roi_gray)
for (ex, ey, ew, eh) in eyes:
cv2.rectangle(
roi_color, (ex, ey), (ex + ew, ey + eh), (0, 255, 0), 2
)
# Check to see if the user closed the window
# Under GTK+ (Jetson Default), WND_PROP_VISIBLE does not work correctly. Under Qt it does
# GTK - Substitute WND_PROP_AUTOSIZE to detect if window has been closed by user
if cv2.getWindowProperty(window_title, cv2.WND_PROP_AUTOSIZE) >= 0:
cv2.imshow(window_title, frame)
else:
break
keyCode = cv2.waitKey(10) & 0xFF
# Stop the program on the ESC key or 'q'
if keyCode == 27 or keyCode == ord('q'):
break
finally:
video_capture.release()
cv2.destroyAllWindows()
else:
print("Unable to open camera")
if __name__ == "__main__":
face_detect()