-
Notifications
You must be signed in to change notification settings - Fork 26
/
Copy pathutil.py
305 lines (260 loc) · 9.54 KB
/
util.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
import sys
import copy
import random
import numpy as np
from tqdm import tqdm
from collections import defaultdict
from multiprocessing import Process, Queue
import numpy as np
def random_neq(l, r, s):
t = np.random.randint(l, r)
while t in s:
t = np.random.randint(l, r)
return t
def computeRePos(time_seq, time_span):
size = time_seq.shape[0]
time_matrix = np.zeros([size, size], dtype=np.int32)
for i in range(size):
for j in range(size):
span = abs(time_seq[i]-time_seq[j])
if span > time_span:
time_matrix[i][j] = time_span
else:
time_matrix[i][j] = span
return time_matrix
def Relation(user_train, usernum, maxlen, time_span):
data_train = dict()
for user in tqdm(range(1, usernum+1), desc='Preparing relation matrix'):
time_seq = np.zeros([maxlen], dtype=np.int32)
idx = maxlen - 1
for i in reversed(user_train[user][:-1]):
time_seq[idx] = i[1]
idx -= 1
if idx == -1: break
data_train[user] = computeRePos(time_seq, time_span)
return data_train
def sample_function(user_train, usernum, itemnum, batch_size, maxlen, relation_matrix, result_queue, SEED):
def sample(user):
seq = np.zeros([maxlen], dtype=np.int32)
time_seq = np.zeros([maxlen], dtype=np.int32)
pos = np.zeros([maxlen], dtype=np.int32)
neg = np.zeros([maxlen], dtype=np.int32)
nxt = user_train[user][-1][0]
idx = maxlen - 1
ts = set(map(lambda x: x[0],user_train[user]))
for i in reversed(user_train[user][:-1]):
seq[idx] = i[0]
time_seq[idx] = i[1]
pos[idx] = nxt
if nxt != 0: neg[idx] = random_neq(1, itemnum + 1, ts)
nxt = i[0]
idx -= 1
if idx == -1: break
time_matrix = relation_matrix[user]
return (user, seq, time_seq, time_matrix, pos, neg)
np.random.seed(SEED)
while True:
one_batch = []
for i in range(batch_size):
user = np.random.randint(1, usernum + 1)
while len(user_train[user]) <= 1: user = np.random.randint(1, usernum + 1)
one_batch.append(sample(user))
result_queue.put(zip(*one_batch))
class WarpSampler(object):
def __init__(self, User, usernum, itemnum, relation_matrix, batch_size=64, maxlen=10,n_workers=1):
self.result_queue = Queue(maxsize=n_workers * 10)
self.processors = []
for i in range(n_workers):
self.processors.append(
Process(target=sample_function, args=(User,
usernum,
itemnum,
batch_size,
maxlen,
relation_matrix,
self.result_queue,
np.random.randint(2e9)
)))
self.processors[-1].daemon = True
self.processors[-1].start()
def next_batch(self):
return self.result_queue.get()
def close(self):
for p in self.processors:
p.terminate()
p.join()
def timeSlice(time_set):
time_min = min(time_set)
time_map = dict()
for time in time_set:
time_map[time] = int(round(float(time-time_min)))
return time_map
def cleanAndsort(User, time_map):
User_filted = dict()
user_set = set()
item_set = set()
for user, items in User.items():
user_set.add(user)
User_filted[user] = items
for item in items:
item_set.add(item[0])
user_map = dict()
item_map = dict()
for u, user in enumerate(user_set):
user_map[user] = u+1
for i, item in enumerate(item_set):
item_map[item] = i+1
for user, items in User_filted.items():
User_filted[user] = sorted(items, key=lambda x: x[1])
User_res = dict()
for user, items in User_filted.items():
User_res[user_map[user]] = list(map(lambda x: [item_map[x[0]], time_map[x[1]]], items))
time_max = set()
for user, items in User_res.items():
time_list = list(map(lambda x: x[1], items))
time_diff = set()
for i in range(len(time_list)-1):
if time_list[i+1]-time_list[i] != 0:
time_diff.add(time_list[i+1]-time_list[i])
if len(time_diff)==0:
time_scale = 1
else:
time_scale = min(time_diff)
time_min = min(time_list)
User_res[user] = list(map(lambda x: [x[0], int(round((x[1]-time_min)/time_scale)+1)], items))
time_max.add(max(set(map(lambda x: x[1], User_res[user]))))
return User_res, len(user_set), len(item_set), max(time_max)
def data_partition(fname):
usernum = 0
itemnum = 0
User = defaultdict(list)
user_train = {}
user_valid = {}
user_test = {}
print('Preparing data...')
f = open('data/%s.txt' % fname, 'r')
time_set = set()
user_count = defaultdict(int)
item_count = defaultdict(int)
for line in f:
try:
u, i, rating, timestamp = line.rstrip().split('\t')
except:
u, i, timestamp = line.rstrip().split('\t')
u = int(u)
i = int(i)
user_count[u]+=1
item_count[i]+=1
f.close()
f = open('data/%s.txt' % fname, 'r')
for line in f:
try:
u, i, rating, timestamp = line.rstrip().split('\t')
except:
u, i, timestamp = line.rstrip().split('\t')
u = int(u)
i = int(i)
timestamp = float(timestamp)
if user_count[u]<5 or item_count[i]<5:
continue
time_set.add(timestamp)
User[u].append([i, timestamp])
f.close()
time_map = timeSlice(time_set)
User, usernum, itemnum, timenum = cleanAndsort(User, time_map)
for user in User:
nfeedback = len(User[user])
if nfeedback < 3:
user_train[user] = User[user]
user_valid[user] = []
user_test[user] = []
else:
user_train[user] = User[user][:-2]
user_valid[user] = []
user_valid[user].append(User[user][-2])
user_test[user] = []
user_test[user].append(User[user][-1])
print('Preparing done...')
return [user_train, user_valid, user_test, usernum, itemnum, timenum]
def evaluate(model, dataset, args, sess):
[train, valid, test, usernum, itemnum, timenum] = copy.deepcopy(dataset)
NDCG = 0.0
HT = 0.0
valid_user = 0.0
if usernum>10000:
users = random.sample(range(1, usernum + 1), 10000)
else:
users = range(1, usernum + 1)
for u in users:
if len(train[u]) < 1 or len(test[u]) < 1: continue
seq = np.zeros([args.maxlen], dtype=np.int32)
time_seq = np.zeros([args.maxlen], dtype=np.int32)
idx = args.maxlen - 1
seq[idx] = valid[u][0][0]
time_seq[idx] = valid[u][0][1]
idx -= 1
for i in reversed(train[u]):
seq[idx] = i[0]
time_seq[idx] = i[1]
idx -= 1
if idx == -1: break
rated = set(map(lambda x: x[0],train[u]))
rated.add(valid[u][0][0])
rated.add(test[u][0][0])
rated.add(0)
item_idx = [test[u][0][0]]
for _ in range(100):
t = np.random.randint(1, itemnum + 1)
while t in rated: t = np.random.randint(1, itemnum + 1)
item_idx.append(t)
time_matrix = computeRePos(time_seq, args.time_span)
predictions = -model.predict(sess, [u], [seq], [time_matrix],item_idx)
predictions = predictions[0]
rank = predictions.argsort().argsort()[0]
valid_user += 1
if rank < 10:
NDCG += 1 / np.log2(rank + 2)
HT += 1
if valid_user % 100 == 0:
print('.',end='')
sys.stdout.flush()
return NDCG / valid_user, HT / valid_user
def evaluate_valid(model, dataset, args, sess):
[train, valid, test, usernum, itemnum, timenum] = copy.deepcopy(dataset)
NDCG = 0.0
valid_user = 0.0
HT = 0.0
if usernum>10000:
users = random.sample(range(1, usernum + 1), 10000)
else:
users = range(1, usernum + 1)
for u in users:
if len(train[u]) < 1 or len(valid[u]) < 1: continue
seq = np.zeros([args.maxlen], dtype=np.int32)
time_seq = np.zeros([args.maxlen], dtype=np.int32)
idx = args.maxlen - 1
for i in reversed(train[u]):
seq[idx] = i[0]
time_seq[idx] = i[1]
idx -= 1
if idx == -1: break
rated = set(map(lambda x: x[0], train[u]))
rated.add(valid[u][0][0])
rated.add(0)
item_idx = [valid[u][0][0]]
for _ in range(100):
t = np.random.randint(1, itemnum + 1)
while t in rated: t = np.random.randint(1, itemnum + 1)
item_idx.append(t)
time_matrix = computeRePos(time_seq, args.time_span)
predictions = -model.predict(sess, [u], [seq], [time_matrix],item_idx)
predictions = predictions[0]
rank = predictions.argsort().argsort()[0]
valid_user += 1
if rank < 10:
NDCG += 1 / np.log2(rank + 2)
HT += 1
if valid_user % 100 == 0:
print('.',end='')
sys.stdout.flush()
return NDCG / valid_user, HT / valid_user