-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathGDspike.m
221 lines (175 loc) · 7.54 KB
/
GDspike.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
% Copyright (C) 2017 Speech and Music Technology Lab,
% Indian Institute of Technology Madras
% Contributed by Jilt Sebastian <[email protected]>
% This file is a part of GDspike:Spike estimation evaluation system
% GDspike is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
% GDspike is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
% You should have received a copy of the GNU General Public License.
% If not, see <http://www.gnu.org/licenses/>.
% input parameters of the function GD_spike
% %% Load the input and pass it to the function: Ca_signal
% Threshold: To be used in triangulation step (default= 0.4)
% Resampling_rate: Rate of sampling used for obtaining the spike estimates (default=100)
% winScaleFactor: GD_window_scale_factor- Division factor at the GD domain (default=4)
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [ grp_delay, signal, GD_out] = GDspike(Ca_signal)
%[Ca_signal]= load(Input); % signal and its sampling rate, edit appropriately
%edit here
Ca_Samp_rate = 60;
Resampling_rate = 60;
threshold = 0.4;
winScaleFactor = 4;
%resampling the data
resampled_Ca=resample(double(Ca_signal),Resampling_rate,Ca_Samp_rate);
[Ca_signal_value]=resampled_Ca(1:floor(length(Ca_signal)/Ca_Samp_rate*Resampling_rate));
[Ca_signal_time]= 0:1/Resampling_rate:length(Ca_signal_value)/Resampling_rate;
S = Ca_signal_value;
% GD computation======================================================================
grp_delay = ones(length(S),1);
gd_sum = ones(length(S),1);
tempDir = sprintf('temp_%d',winScaleFactor);
warning('off','all')
mkdir(tempDir); cd(tempDir);
energy_file_name = strcat(sprintf('neuron'),'.en');
dlmwrite(energy_file_name,S,'\n');
%display(size(S));
spec_file_name = energy_file_name(1:end-2);
spec_file_name =strcat(spec_file_name,'spec');
% Invoking the binary
copyfile('../fe-words.base','fe-words.base');
ctrl_file = 'fe-words.base';
temp_ctrl_file = strcat('temp.base');
% Changing the winscalefactor parameter in config file
a = importdata(ctrl_file);
a = struct2cell(a);
a{1}(3) = winScaleFactor;
% fprintf('Window scale factor is %d\n',winScaleFactor(wsfIndex));
fid0 = fopen(temp_ctrl_file,'w');
for i = 1:length(a{1})
fprintf(fid0,'%s %s %f\n',char(a{2}(i,1)),char(a{2}(i,2)),a{1}(i));
end
copyfile(temp_ctrl_file,ctrl_file);
fclose(fid0);
dummy1 = 'b';
dummy2 = 'c';
dummy3 = 'd';
dummy4 = 'e';
dump = 'dump.txt';
% Part 1: Running the binary file-which gives the gd domain output
system(sprintf('../WordSegmentWithSilenceRemoval %s %s %s %s %s %s %s > %s 2>&1',ctrl_file,energy_file_name,spec_file_name,dummy1,dummy2,dummy3,dummy4,dump));
delete(energy_file_name);
temp = load(spec_file_name);
temp = temp(:,5);
temp(length(S)+1:end) = [];
grp_delay = grp_delay.*temp;
temp = temp - mean(temp);
gd_sum = gd_sum + cumsum(temp);
cd ..;
grp_delay = diff(gd_sum);
grp_delay = grp_delay/max(grp_delay);
grp_delay=[grp_delay(1:end-20);grp_delay(end-20).*ones(20,1)];
grp_delay=smooth(grp_delay,5);
%grp_delay = (grp_delay-mean(grp_delay))./std(grp_delay);
assignin('base','grp_delay',grp_delay);
% Part2: Reading the contents of group delay file, and getting the spike locations
spike_loc = zeros(1,length(grp_delay));
t = 1:length(grp_delay);
[ymax,imax,ymin,imin] = extrema(grp_delay);
% sort the minimas and maximas;=================================================
temp_min = sortrows([imin ymin]);
imin = temp_min(:,1)';
ymin = temp_min(:,2)';
clear temp_min;
temp_max = sortrows([imax ymax]);
imax = temp_max(:,1)';
ymax = temp_max(:,2)';
clear temp_max;
if (imin(1) < imax(1) ) % fine, just truncate the maximum
imin(1) = []; ymin(1) = [];
if (length(imin) > length(imax) )
imin(length(imax)+1:end) = [];
ymin(length(imax)+1:end) = [];
elseif (length(imin) < length(imax) )
imax(length(imin)+1:end) = [];
ymax(length(imin)+1:end) = [];
end
else
if (length(imin) > length(imax) )
disp('this shouldnt have come');
imin(length(imax)+1:end) = [];
ymin(length(imax)+1:end) = [];
elseif (length(imin) < length(imax) )
imax(length(imin)+1:end) = [];
ymax(length(imin)+1:end) = [];
end
end
assignin('base','ymax',ymax);
assignin('base','imax',imax);
assignin('base','ymin',ymin);
assignin('base','imin',imin);
assignin('base','grp_delay',grp_delay);
% A basic algorithm based on the threshold =============================================
index_spike = 1;
peak_valley_heights = ymax - ymin;
peak_valley_heights = peak_valley_heights(1:length(peak_valley_heights));
for index = 1:1:length(peak_valley_heights)
if (peak_valley_heights(index) > threshold)
spike_loc(index_spike) = imin(index) ;
index_spike = index_spike + 2;
end
end
%==================================================================
% Part 3: Triangulation step
spike_loc(spike_loc==0) = [];
assignin('base','spike_loc',spike_loc);
assignin('base','peaks',peaks);
dangerflag = 0;
X=S;
Fs=Ca_Samp_rate;
length_wav_file = length(X)*1/Fs;
spike_loc = spike_loc*Ca_Samp_rate/Fs;
time=length(S)/Fs;% Converting into seconds
gdans=zeros(length(S),1);
gdans(spike_loc)=1;
isort = sort([imax imin]);
exts=0;
exte=0;
iexts=1;
iexte=1;
ind=1;
for ind= 1:length(isort)-1
iexts=isort(ind);
iexte=isort(ind+1);
exts = grp_delay(iexts);
exte = grp_delay(iexte);
valley_lenght=abs(exts-exte);
signal(iexts)=0;
signal(iexte)=0;
intermediate_samples=iexte-iexts-2;
increment_value=valley_lenght/(floor((intermediate_samples+1)/2));
sum=0;
if valley_lenght>0.1*max(grp_delay)
for j=iexts+1:iexts+floor((intermediate_samples+1)/2)
sum=sum+increment_value;
signal(j)=sum;
end
sum=0;
for j=iexte-1:-1:iexts+floor((intermediate_samples+1)/2)+1
sum=sum+increment_value;
signal(j)=sum;
end
else
signal(iexts:iexte)=0;
end
end
signal(isort(length(isort)):time*Fs)=0;
% end of GD computation======================================================================
GD_out=downsample_(Inc_Spk1(signal',threshold),1);
end