-
Notifications
You must be signed in to change notification settings - Fork 99
/
Copy pathpretrain.py
200 lines (160 loc) · 9.03 KB
/
pretrain.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
"""Script for a pretraining run."""
import torch
import hydra
import os
import time
import datetime
import logging
from collections import defaultdict
import cramming
log = logging.getLogger(__name__)
def main_training_process(cfg, setup):
"""This function controls the central training loop."""
local_time = time.time()
model = cramming.construct_model(cfg.arch, cfg.data.vocab_size)
dataset, tokenizer = cramming.load_pretraining_corpus(cfg.data, cfg.impl)
checkpoint_rendevous = os.path.join(cfg.base_dir, cfg.name, "intermediate_state.pth")
if cfg.impl.resume_run_after_preempt and os.path.isfile(checkpoint_rendevous):
try:
metadata = torch.load(checkpoint_rendevous, map_location=torch.device("cpu"))["metadata"]
initial_step, elapsed_time = metadata["step"], metadata["elapsed"]
except RuntimeError:
log.info("Checkpoint file unreadable or corrupted.")
os.remove(checkpoint_rendevous)
initial_step, elapsed_time = 0, 0.0
else:
initial_step, elapsed_time = 0, 0.0
model_engine, _, _, dataloader = cramming.load_backend(model, dataset, tokenizer, cfg.train, cfg.impl, elapsed_time, setup=setup)
if cfg.impl.resume_run_after_preempt and os.path.isfile(checkpoint_rendevous):
log.info(f"Loading intermediate checkpoint from previous run onto device {cfg.impl.local_rank}...")
model_engine.load_training_checkpoint(checkpoint_rendevous)
model_engine.train(cfg.train.pretrain_in_train_mode)
stats = defaultdict(list)
# Start the clocks now:
wallclock_timer = time.time() - elapsed_time
train_time = time.time()
training_allowed, no_recovery_necessary = True, True
loss_vals = []
# Launch training
for step, batch in enumerate(dataloader, initial_step + 1):
# Heavy lifting is moved to engines
device_batch = model_engine.to_device(batch)
loss = model_engine.step(device_batch)
loss_vals.append(loss.detach())
# Check stopping criteria
if check_deadline(wallclock_timer, cfg.budget) or step == cfg.train.steps:
training_allowed = False
log.info("Reached deadline. Stopping training ...")
# Collect stats and print to console and upload to wandb
if step % cfg.impl.print_loss_every_nth_step == 0:
loss_vals, train_time = collect_stats(step, loss_vals, train_time, stats, model_engine, dataloader, cfg)
if check_early_termination(wallclock_timer, stats["loss"][-1], cfg.impl.early_termination):
training_allowed = False
log.info("Loss higher than allowed threshold. Stopping training early...")
# Checkpointing is triggered from stopping criteria and normal intervals
if cfg.impl.save_intermediate_checkpoints and step % cfg.impl.save_every_nth_step == 0:
if loss.detach().isfinite() and cramming.utils.is_main_process() and not cfg.dryrun:
model_engine.save_training_checkpoint(checkpoint_rendevous, metadata=dict(step=step, elapsed=time.time() - wallclock_timer))
if not loss.detach().isfinite():
training_allowed, no_recovery_necessary = engage_troubleshooting(
model_engine, step, training_allowed, no_recovery_necessary, cfg
)
communicate_flags(training_allowed, no_recovery_necessary)
if (cfg.dryrun and step > 2) or not training_allowed:
break
if not no_recovery_necessary: # synced across devices
log.info(f"Attempting reload of checkpoint on device {cfg.impl.local_rank}.")
model_engine.load_training_checkpoint(checkpoint_rendevous)
no_recovery_necessary = True
# Save to summary:
cramming.utils.save_summary("pretrain", cfg, stats, time.time() - local_time, setup)
if cramming.utils.is_main_process():
# Save final checkpoint? Might have to recover the latest checkpoint first
if not loss.detach().isfinite() and cfg.impl.save_intermediate_checkpoints:
model_engine.load_training_checkpoint(checkpoint_rendevous)
loss = torch.as_tensor(16.0) # fake value for model file name
if loss.detach().isfinite():
now = datetime.datetime.now()
long_checkpoint_id = f"{''.join(cfg.arch.architectures)}_{now.strftime('%Y-%m-%d')}_{loss:2.4f}"
model_engine.save_final_model(os.path.join(cfg.base_dir, cfg.name), long_checkpoint_id, tokenizer, cfg.arch, cfg.dryrun)
if cfg.impl.push_to_huggingface_hub:
model_engine.push_to_hub(tokenizer, cfg, dryrun=cfg.dryrun)
metrics = dict(num_params=sum([p.numel() for p in model.parameters()]))
return metrics
def check_deadline(launch_time, hour_limit):
"""These measurements are deliberately wall-clock based."""
current_time = time.time()
return True if (current_time - launch_time) / 3600 > hour_limit else False
def check_early_termination(launch_time, loss, early_termination):
"""Early termination based on terrible loss."""
if early_termination.enabled and loss > early_termination.loss_threshold:
current_time = time.time()
return True if (current_time - launch_time) / 3600 > early_termination.budget else False
else:
return False
def collect_stats(step, loss_vals, train_time, stats, model_engine, dataloader, cfg):
stats["step"] += [step]
stats["epoch"] += [dataloader.epoch_counter]
tokens_per_step = model_engine.record_tokens_per_step()
stats["tokens"] += [step * tokens_per_step]
stats["loss"] += [torch.stack(loss_vals).mean().item()] # Averaged loss
current_lr = model_engine.optimizer.param_groups[0].get("lr", float("NaN"))
log_msg = f"Train loss {loss_vals[-1].item():2.4f} at step {step} with lr {current_lr:.5f}. "
log_msg += f"[Avg: {stats['loss'][-1]:2.4f}] "
if step > 0:
stats["train_time"] += [(time.time() - train_time) / cfg.impl.print_loss_every_nth_step]
estimated_train_finish = str(datetime.timedelta(seconds=stats["train_time"][-1] * cfg.train.steps))
tokens_per_second = tokens_per_step / stats["train_time"][-1]
stats["tok/sec"] += [int(tokens_per_second)]
log_msg += f" Perf: {stats['train_time'][-1]:2.4f}s per step ({tokens_per_second:.0f}t/s). "
log_msg += f"Estimated Total Train: {estimated_train_finish}."
# Adaptive optim stats
stats["lr"] += [current_lr]
stats["batch_size"] += [model_engine.record_batch_size()]
stats["seq_length"] = [model_engine.current_seq_length]
# Publish
cramming.utils.wandb_log(stats, cfg)
log.info(log_msg)
# Clear:
loss_vals = []
train_time = time.time()
return loss_vals, train_time
def engage_troubleshooting(model_engine, step, training_allowed, no_recovery_necessary, cfg):
log.info(f"Non-finite loss in step {step} on device {cfg.impl.local_rank}.")
is_finite_grad = [torch.isfinite(p.grad).all() for p in model_engine.model.parameters() if p.grad is not None]
has_finite_gradients = torch.stack(is_finite_grad).all() if len(is_finite_grad) > 0 else True
if not has_finite_gradients:
if "dump_nan_grads" in cfg.impl.troubleshoot_strategy:
log.info(f"Non-finite gradients in step {step} on device {cfg.impl.local_rank}, dumping...")
model_engine.optimizer.zero_grad()
else:
if "recover_checkpoint" in cfg.impl.troubleshoot_strategy:
no_recovery_necessary = False
else:
training_allowed = False
log.info(f"Stopping training due to non-finite grads in step {step} on device {cfg.impl.local_rank}.")
has_finite_parameters = torch.stack([torch.isfinite(p).all() for p in model_engine.model.parameters()]).all()
if not has_finite_parameters:
if "recover_checkpoint" in cfg.impl.troubleshoot_strategy:
no_recovery_necessary = False
else:
training_allowed = False
log.info(f"Stopping training due to non-finite parameters in step {step} on device {cfg.impl.local_rank}.")
return training_allowed, no_recovery_necessary
def communicate_flags(training_allowed, no_recovery_necessary):
"""A quick and dirty communication through the comm protocol. Should not be a major burden."""
if torch.distributed.is_initialized():
comm_tensor_allowed = torch.as_tensor([training_allowed, no_recovery_necessary])
comm_tensor_allowed = comm_tensor_allowed.cuda() if torch.cuda.is_available() else comm_tensor_allowed.float()
torch.distributed.all_reduce(comm_tensor_allowed, torch.distributed.ReduceOp.MIN, async_op=False)
if comm_tensor_allowed[0] >= 1: # training indeed allowed on all devices
return True, comm_tensor_allowed[1] > 0
else:
return False, True
else:
return training_allowed, no_recovery_necessary
@hydra.main(config_path="cramming/config", config_name="cfg_pretrain", version_base="1.1")
def launch(cfg):
cramming.utils.main_launcher(cfg, main_training_process, job_name="pretraining")
if __name__ == "__main__":
launch()