-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathdata.py
88 lines (71 loc) · 3.68 KB
/
data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
import tensorflow as tf
import numpy as np
import pandas as pd
from config import directories
def random_rotation(img, max_rotation=0.1, crop=True):
with tf.name_scope('RandomRotation'):
rotation = tf.random_uniform([], -max_rotation, max_rotation)
rotated_image = tf.contrib.image.rotate(img, rotation, interpolation='BILINEAR')
if crop:
rotation = tf.abs(rotation)
original_shape = tf.shape(rotated_image)[:2]
h, w = original_shape[0], original_shape[1]
old_l, old_s = tf.cond(h > w, lambda: [h, w], lambda: [w, h])
old_l, old_s = tf.cast(old_l, tf.float32), tf.cast(old_s, tf.float32)
new_l = (old_l * tf.cos(rotation) - old_s * tf.sin(rotation)) / tf.cos(2*rotation)
new_s = (old_s - tf.sin(rotation) * new_l) / tf.cos(rotation)
new_h, new_w = tf.cond(h > w, lambda: [new_l, new_s], lambda: [new_s, new_l])
new_h, new_w = tf.cast(new_h, tf.int32), tf.cast(new_w, tf.int32)
bb_begin = tf.cast(tf.ceil((h-new_h)/2), tf.int32), tf.cast(tf.ceil((w-new_w)/2), tf.int32)
rotated_image_crop = rotated_image[bb_begin[0]:h - bb_begin[0], bb_begin[1]:w - bb_begin[1], :]
# If crop removes the entire image, keep the original image
rotated_image = tf.cond(tf.equal(tf.size(rotated_image_crop), 0),
true_fn=lambda: img,
false_fn=lambda: rotated_image_crop)
return rotated_image
class Data(object):
@staticmethod
def preprocess_inference(image_path, resize=(32,32)):
# Preprocess individual images during inference
image_path = tf.squeeze(image_path)
image = tf.image.decode_png(tf.read_file(image_path))
image = tf.image.convert_image_dtype(image, dtype=tf.float32)
image = tf.image.per_image_standardization(image)
image = tf.image.resize_images(image, size=resize)
return image
@staticmethod
def load_dataset(filenames, batch_size, resize=(32,32), test=False,
augment=False):
# Consume TFRecord image data
def _augment(image):
# On-the-fly data augmentation
image = tf.image.random_brightness(image, max_delta=0.1)
image = tf.image.random_contrast(image, 0.5, 1.5)
image = tf.image.random_flip_left_right(image)
image = random_rotation(image, 0.05, crop=True) # radians
return image
def _parser(record):
keys_to_features = {
"image/encoded": tf.FixedLenFeature((), tf.string, default_value=""),
"image/class/label": tf.FixedLenFeature((), tf.int64)
}
parsed = tf.parse_single_example(record, keys_to_features)
# image = tf.decode_raw(parsed['image/encoded'], tf.uint8)
image = tf.image.decode_image(parsed["image/encoded"])
image = tf.image.convert_image_dtype(image, dtype=tf.float32)
image.set_shape([32,32,3])
if augment and not test:
image = _augment(image)
image = tf.image.per_image_standardization(image)
image = tf.image.resize_images(image, size=resize)
label = tf.cast(parsed["image/class/label"], tf.int32)
return image, label
dataset = tf.data.TFRecordDataset(filenames)
dataset = dataset.shuffle(buffer_size=8192) # shuffle filenames
dataset = dataset.map(_parser)
dataset = dataset.cache()
# dataset = dataset.map_and_batch(_parser)
dataset = dataset.batch(batch_size)
if test:
dataset = dataset.repeat()
return dataset