-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain.py
152 lines (126 loc) · 5.65 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
#!/usr/bin/env python
import json
import numpy as np
import torch
import torch.optim as optim
from torch.optim.lr_scheduler import MultiStepLR
from model.Elem import Elem
from model.EmELpp import EmELpp
from model.Elbe import Elbe
from model.BoxEL import BoxEL
from model.AblationModel import AblationModel
from model.BoxSquaredEL import BoxSquaredEL
from utils.data_loader import DataLoader
import logging
from tqdm import trange
import wandb
from evaluate import compute_ranks, evaluate
from utils.utils import get_device
import sys
logging.basicConfig(level=logging.INFO)
def main():
torch.manual_seed(42)
np.random.seed(12)
if len(sys.argv) > 1:
sweep_id = sys.argv[1]
count = None if len(sys.argv) <= 2 else sys.argv[2]
print(count)
wandb.agent(sweep_id=f'mathiasj/el-baselines/{sweep_id}', function=run, count=count)
else:
with open('configs.json', 'r') as f:
configs = json.load(f)
run(config=configs['GALEN']['prediction'], use_wandb=True)
def run(config=None, use_wandb=True, split='val'):
if config is None: # running a sweep
num_epochs = 5000
wandb.init()
else:
num_epochs = 5000 if 'epochs' not in config else config['epochs']
mode = 'online' if use_wandb else 'disabled'
wandb.init(mode=mode, project='BoxSquaredEL', entity='mathiasj', config=config)
embedding_dim = 200
num_neg = wandb.config.num_neg if 'num_neg' in wandb.config else 1
dataset = wandb.config.dataset
task = wandb.config.task
device = get_device()
data_loader = DataLoader.from_task(task)
train_data, classes, relations = data_loader.load_data(dataset)
val_data = data_loader.load_val_data(dataset, classes)
val_data['nf1'] = val_data['nf1'][:1000]
print('Loaded data.')
# model = Elem(device, classes, len(relations), embedding_dim, margin=0.00)
# model = EmELpp(device, classes, len(relations), embedding_dim, margin=0.05)
# model = Elbe(device, classes, len(relations), embedding_dim, margin=0.05)
# model = BoxEL(device, classes, len(relations), embedding_dim)
# model = AblationModel(device, embedding_dim, len(classes), len(relations),
# margin=wandb.config.margin, neg_dist=wandb.config.neg_dist, num_neg=num_neg)
model = BoxSquaredEL(device, embedding_dim, len(classes), len(relations),
margin=wandb.config.margin, neg_dist=wandb.config.neg_dist,
reg_factor=wandb.config.reg_factor, num_neg=num_neg)
wandb.config['model'] = model.name
out_folder = f'data/{dataset}/{task}/{model.name}'
optimizer = optim.Adam(model.parameters(), lr=wandb.config.lr)
if wandb.config.lr_schedule is None:
scheduler = None
else:
scheduler = MultiStepLR(optimizer, milestones=[wandb.config.lr_schedule], gamma=0.1)
model = model.to(device)
if not model.negative_sampling and task != 'old':
sample_negatives(train_data, 1)
train(model, train_data, val_data, len(classes), optimizer, scheduler, out_folder, num_neg, num_epochs=num_epochs,
val_freq=100)
print('Computing test scores...')
scores = evaluate(dataset, task, model.name, embedding_size=model.embedding_dim, best=True, split=split)
combined_scores = scores[-1]
surrogate = np.median(combined_scores.ranks) - combined_scores.top100 / len(combined_scores) - \
0.1 * combined_scores.top10 / len(combined_scores)
wandb.log({'surrogate': surrogate})
wandb.finish()
return scores
def train(model, data, val_data, num_classes, optimizer, scheduler, out_folder, num_neg, num_epochs=2000, val_freq=100):
model.train()
wandb.watch(model)
best_top10 = 0
best_top100 = 0
best_median = sys.maxsize
best_mean = sys.maxsize
best_epoch = 0
try:
for epoch in trange(num_epochs):
if model.negative_sampling:
sample_negatives(data, num_neg)
loss = model(data)
if epoch % val_freq == 0 and val_data is not None:
ranking = compute_ranks(model.to_loaded_model(), val_data, num_classes, 'nf1', model.device)
wandb.log({'top10': ranking.top10 / len(ranking), 'top100': ranking.top100 / len(ranking),
'mean_rank': np.mean(ranking.ranks), 'median_rank': np.median(ranking.ranks)}, commit=False)
# if ranking.top100 >= best_top100:
if np.median(ranking.ranks) <= best_median:
# if np.mean(ranking.ranks) <= best_mean:
best_top10 = ranking.top10
best_top100 = ranking.top100
best_median = np.median(ranking.ranks)
best_mean = np.mean(ranking.ranks)
best_epoch = epoch
model.save(out_folder, best=True)
wandb.log({'loss': loss})
optimizer.zero_grad()
loss.backward()
optimizer.step()
if scheduler is not None:
scheduler.step()
except KeyboardInterrupt:
print('Interrupted. Stopping training...')
print(f'Best epoch: {best_epoch}')
model.save(out_folder)
def sample_negatives(data, num_neg):
for i in range(num_neg):
nf3 = data['nf3']
randoms = np.random.choice(data['class_ids'], size=(nf3.shape[0], 2))
randoms = torch.from_numpy(randoms)
new_tails = torch.cat([nf3[:, [0, 1]], randoms[:, 0].reshape(-1, 1)], dim=1)
new_heads = torch.cat([randoms[:, 1].reshape(-1, 1), nf3[:, [1, 2]]], dim=1)
new_neg = torch.cat([new_tails, new_heads], dim=0)
data[f'nf3_neg{i}'] = new_neg
if __name__ == '__main__':
main()