存储过程(Stored Procedure)是一组为了完成特定功能的SQL 语句集,经编译后存储在数据库中。用户通过指定存储过程的名字并给出参数(如果该存储过程带有参数)来执行它。
CREAT PROCEDURE NAME()
BEGIN
... ; 只有一句话 beginend可以省略
END
CALL NAME ();
优点:
(1)减少网络通信量。 调用一个行数不多的存储过程与直接调用SQL 语句的网络通信量可能不会有很大的差别,可是如果存储过程包含上百行SQL 语句,那么其性能绝对比一条一条的调用SQL 语句要高得多。 (2)执行速度更快。 有两个原因:首先,在存储过程创建的时候,数据库已经对其进行了一次解析和优化。其次,存储过程一旦执行,在内存中就会保留一份这个存储过程,这样下次再执行同样的存储过程时,可以从内存中直接调用。 (3)更强的适应性。 由于存储过程对数据库的访问是通过存储过程来进行的,因此数据库开发人员可以在不改动存储过程接口的情况下对数据库进行任何改动,而这些改动不会对应用程序造成影响。 (4) 分布式工作。 应用程序和数据库的编码工作可以分别独立进行,而不会相互压制。
缺点: 1.如果更改范围大到需要对输入存储过程的参数进行更改,或者要更改由其返回的数据,则您仍需要更新程序集中的代码以添加参数、更新 GetValue() 调用,等等,这时候估计比较繁琐了。 2.可移植性差 由于存储过程将应用程序绑定到 SQL Server,因此使用存储过程封装业务逻辑将限制应用程序的可移植性。
索引是对数据库表中一列或多列的值进行排序的一种结构,使用索引可快速访问数据库表中的特定信息。 l 索引分为:聚集索引、非聚集索引、唯一索引等。 l 一张表可以有多个唯一索引和非聚集索引,但最多只能有一个聚集索引。 l 索引可以包含多列。 l 合理的创建索引能够提升查询语句的执行效率,但降低了新增、删除操作的速度,同时也会消耗一定的数据库物理空间。
B-tree,B是balance,一般用于数据库的索引。使用B-tree结构可以显著减少定位记录时所经历的中间过程,从而加快存取速度。而B+tree是B-tree的一个变种,MySQL就普遍使用B+tree实现其索引结构。 一般来说,索引本身也很大,不可能全部存储在内存中,因此索引往往以索引文件的形式存储的磁盘上。这样的话,索引查找过程中就要产生磁盘I/O消耗,相对于内存存取,I/O存取的消耗要高几个数量级,所以评价一个数据结构作为索引的优劣最重要的指标就是在查找过程中磁盘I/O操作次数的渐进复杂度。换句话说,索引的结构组织要尽量减少查找过程中磁盘I/O的存取次数。 为了达到这个目的,磁盘按需读取,要求每次都会预读的长度一般为页的整数倍。而且数据库系统将一个节点的大小设为等于一个页,这样每个节点只需要一次I/O就可以完全载入。每次新建节点时,直接申请一个页的空间,这样就保证一个节点物理上也存储在一个页里,加之计算机存储分配都是按页对齐的,就实现了一个node只需一次I/O。并把B-tree中的m值设的非常大,就会让树的高度降低,有利于一次完全载入
聚集索引与非聚集索引的区别是:叶节点是否存放一整行记录,也就是说聚集索引的顺序就是数据的物理存储顺序。它会根据聚集索引键的顺序来存储表中的数据,即对表的数据按索引键的顺序进行排序,然后重新存储到磁盘上。因为数据在物理存放时只能有一种排列方式,所以一个表只能有一个聚集索引。
InnoDB 主键使用的是聚簇索引,MyISAM 不管是主键索引,还是二级索引使用的都是非聚簇索引。
1.对于非聚簇索引表来说(右图),表数据和索引是分成两部分存储的,主键索引和二级索引存储上没有任何区别。使用的是B+树作为索引的存储结构,所有的节点都是索引,叶子节点存储的是索引+索引对应的记录的数据。
2.对于聚簇索引表来说(左图),表数据是和主键一起存储的,主键索引的叶结点存储行数据(包含了主键值),二级索引的叶结点存储行的主键值。使用的是B+树作为索引的存储结构,非叶子节点都是索引关键字,但非叶子节点中的关键字中不存储对应记录的具体内容或内容地址。叶子节点上的数据是主键与具体记录(数据内容)。
1.当你需要取出一定范围内的数据时,用聚簇索引也比用非聚簇索引好。
2.当通过聚簇索引查找目标数据时理论上比非聚簇索引要快,因为非聚簇索引定位到对应主键时还要多一次目标记录寻址,即多一次I/O。
3.使用覆盖索引扫描的查询可以直接使用页节点中的主键值。
1.插入速度严重依赖于插入顺序,按照主键的顺序插入是最快的方式,否则将会出现页分裂,严重影响性能。因此,对于InnoDB表,我们一般都会定义一个自增的ID列为主键。
2.更新主键的代价很高,因为将会导致被更新的行移动。因此,对于InnoDB表,我们一般定义主键为不可更新。
3.二级索引访问需要两次索引查找,第一次找到主键值,第二次根据主键值找到行数据。
二级索引的叶节点存储的是主键值,而不是行指针(非聚簇索引存储的是指针或者说是地址),这是为了减少当出现行移动或数据页分裂时二级索引的维护工作,但会让二级索引占用更多的空间。
4.采用聚簇索引插入新值比采用非聚簇索引插入新值的速度要慢很多,因为插入要保证主键不能重复,判断主键不能重复,采用的方式在不同的索引下面会有很大的性能差距,聚簇索引遍历所有的叶子节点,非聚簇索引也判断所有的叶子节点,但是聚簇索引的叶子节点除了带有主键还有记录值,记录的大小往往比主键要大的多。这样就会导致聚簇索引在判定新记录携带的主键是否重复时进行昂贵的I/O代价。
- InnoDB使用的是聚簇索引,将主键组织到一棵B+树中,而行数据就储存在叶子节点上,若使用"where id = 14"这样的条件查找主键,则按照B+树的检索算法即可查找到对应的叶节点,之后获得行数据。
- 若对Name列进行条件搜索,则需要两个步骤:第一步在辅助索引B+树中检索Name,到达其叶子节点获取对应的主键。第二步使用主键在主索引B+树种再执行一次B+树检索操作,最终到达叶子节点即可获取整行数据。(重点在于通过其他键需要建立辅助索引)
MyISM使用的是非聚簇索引,非聚簇索引的两棵B+树看上去没什么不同,节点的结构完全一致只是存储的内容不同而已,主键索引B+树的节点存储了主键,辅助键索引B+树存储了辅助键。表数据存储在独立的地方,这两颗B+树的叶子节点都使用一个地址指向真正的表数据,对于表数据来说,这两个键没有任何差别。由于索引树是独立的,通过辅助键检索无需访问主键的索引树。
聚簇索引的优势
看上去聚簇索引的效率明显要低于非聚簇索引,因为每次使用辅助索引检索都要经过两次B+树查找,这不是多此一举吗?聚簇索引的优势在哪?
- 由于行数据和叶子节点存储在一起,同一页中会有多条行数据,访问同一数据页不同行记录时,已经把页加载到了Buffer中,再次访问的时候,会在内存中完成访问,不必访问磁盘。这样主键和行数据是一起被载入内存的,找到叶子节点就可以立刻将行数据返回了,如果按照主键Id来组织数据,获得数据更快。
- 辅助索引使用主键作为"指针"而不是使用地址值作为指针的好处是,减少了当出现行移动或者数据页分裂时辅助索引的维护工作,使用主键值当作指针会让辅助索引占用更多的空间,换来的好处是InnoDB在移动行时无须更新辅助索引中的这个"指针"。也就是说行的位置(实现中通过16K的Page来定位)会随着数据库里数据的修改而发生变化(前面的B+树节点分裂以及Page的分裂),使用聚簇索引就可以保证不管这个主键B+树的节点如何变化,辅助索引树都不受影响。
- 聚簇索引适合用在排序的场合,非聚簇索引不适合
- 取出一定范围数据的时候,使用用聚簇索引
- 二级索引需要两次索引查找,而不是一次才能取到数据,因为存储引擎第一次需要通过二级索引找到索引的叶子节点,从而找到数据的主键,然后在聚簇索引中用主键再次查找索引,再找到数据
- 可以把相关数据保存在一起。例如实现电子邮箱时,可以根据用户 ID 来聚集数据,这样只需要从磁盘读取少数的数据页就能获取某个用户的全部邮件。如果没有使用聚簇索引,则每封邮件都可能导致一次磁盘 I/O。
聚簇索引的劣势
- 维护索引很昂贵,特别是插入新行或者主键被更新导至要分页(page split)的时候。建议在大量插入新行后,选在负载较低的时间段,通过OPTIMIZE TABLE优化表,因为必须被移动的行数据可能造成碎片。使用独享表空间可以弱化碎片
- 表因为使用UUId(随机ID)作为主键,使数据存储稀疏,这就会出现聚簇索引有可能有比全表扫面更慢,
主键的值是顺序的,所以 InnoDB 把每一条记录都存储在上一条记录的后面。当达到页的最大填充因子时(InnoDB 默认的最大填充因子是页大小的 15/16,留出部分空间用于以后修改),下一条记录就会写入新的页中。一旦数据按照这种顺序的方式加载,主键页就会近似于被顺序的记录填满(二级索引页可能是不一样的)如果主键比较大的话,那辅助索引将会变的更大,因为辅助索引的叶子存储的是主键值;过长的主键值,会导致非叶子节点占用占用更多的物理空间
为什么主键通常建议使用自增id
聚簇索引的数据的物理存放顺序与索引顺序是一致的,即:只要索引是相邻的,那么对应的数据一定也是相邻地存放在磁盘上的。如果主键不是自增id,那么可以想 象,它会干些什么,不断地调整数据的物理地址、分页,当然也有其他一些措施来减少这些操作,但却无法彻底避免。但,如果是自增的,那就简单了,它只需要一 页一页地写,索引结构相对紧凑,磁盘碎片少,效率也高。
因为MyISAM的主索引并非聚簇索引,那么他的数据的物理地址必然是凌乱的,拿到这些物理地址,按照合适的算法进行I/O读取,于是开始不停的寻道不停的旋转。聚簇索引则只需一次I/O。(强烈的对比)
不过,如果涉及到大数据量的排序、全表扫描、count之类的操作的话,还是MyISAM占优势些,因为索引所占空间小,这些操作是需要在内存中完成的。
mysql中聚簇索引的设定
聚簇索引默认是主键,如果表中没有定义主键,InnoDB 会选择一个唯一的非空索引代替。如果没有这样的索引,InnoDB 会隐式定义一个主键来作为聚簇索引。InnoDB 只聚集在同一个页面中的记录。包含相邻健值的页面可能相距甚远。
1、普通索引
普通索引(由关键字KEY或INDEX定义的索引)的唯一任务是加快对数据的访问速度。因此,应该只为那些最经常出现在查询条件(WHEREcolumn=)或排序条件(ORDERBYcolumn)中的数据列创建索引。只要有可能,就应该选择一个数据最整齐、最紧凑的数据列(如一个整数类型的数据列)来创建索引。
2、唯一索引
普通索引允许被索引的数据列包含重复的值。比如说,因为人有可能同名,所以同一个姓名在同一个“员工个人资料”数据表里可能出现两次或更多次。
如果能确定某个数据列将只包含彼此各不相同的值,在为这个数据列创建索引的时候就应该用关键字UNIQUE把它定义为一个唯一索引。这么做的好处:一是简化了MySQL对这个索引的管理工作,这个索引也因此而变得更有效率;二是MySQL会在有新记录插入数据表时,自动检查新记录的这个字段的值是否已经在某个记录的这个字段里出现过了;如果是,MySQL将拒绝插入那条新记录。也就是说,唯一索引可以保证数据记录的唯一性。事实上,在许多场合,人们创建唯一索引的目的往往不是为了提高访问速度,而只是为了避免数据出现重复。
3、 主索引
在前面已经反复多次强调过:必须为主键字段创建一个索引,这个索引就是所谓的"主索引"。主索引与唯一索引的唯一区别是:前者在定义时使用的关键字是PRIMARY而不是UNIQUE。 4、外键索引 如果为某个外键字段定义了一个外键约束条件,MySQL就会定义一个内部索引来帮助自己以最有效率的方式去管理和使用外键约束条件。 5、复合索引 索引可以覆盖多个数据列,如像INDEX(columnA, columnB)索引。这种索引的特点是MySQL可以有选择地使用一个这样的索引。如果查询操作只需要用到columnA数据列上的一个索引,就可以使用复合索引INDEX(columnA, columnB)。不过,这种用法仅适用于在复合索引中排列在前的数据列组合。比如说,INDEX(A, B, C)可以当做A或(A, B)的索引来使用,但不能当做B、C或(B, C)的索引来使用。 6、全文索引 文本字段上的普通索引只能加快对出现在字段内容最前面的字符串(也就是字段内容开头的字符)进行检索操作。如果字段里存放的是由几个、甚至是多个单词构成的较大段文字,普通索引就没什么作用了。这种检索往往以LIKE %word%的形式出现,这对MySQL来说很复杂,如果需要处理的数据量很大,响应时间就会很长。 这类场合正是全文索引(full-text index)可以大显身手的地方。在生成这种类型的索引时,MySQL将把在文本中出现的所有单词创建为一份清单,查询操作将根据这份清单去检索有关的数据记录。全文索引即可以随数据表一同创建,也可以等日后有必要时再使用下面这条命令添加: ALTER TABLE tablename ADD FULLTEXT(column1, column2) 有了全文索引,就可以用SELECT查询命令去检索那些包含着一个或多个给定单词的数据记录了。下面是这类查询命令的基本语法: SELECT * FROM tablename WHERE MATCH(column1, column2) AGAINST('word1', 'word2', 'word3') 上面这条命令将把column1和column2字段里有word1、word2和word3的数据记录全部查询出来。 注解:InnoDB数据表不支持全文索引。
explain查询时
index
: 表示全索引扫描(full index scan), 和 ALL 类型类似, 只不过 ALL 类型是全表扫描, 而 index 类型则仅仅扫描所有的索引, 而不扫描数据.
index
类型通常出现在: 所要查询的数据直接在索引树中就可以获取到, 而不需要扫描数据. 当是这种情况时, Extra 字段 会显示 Using index
.
ALL: 表示全表扫描, 这个类型的查询是性能最差的查询之一. 通常来说, 我们的查询不应该出现 ALL 类型的查询, 因为这样的查询在数据量大的情况下, 对数据库的性能是巨大的灾难. 如一个查询是 ALL 类型查询, 那么一般来说可以对相应的字段添加索引来避免.
ref
: 此类型通常出现在多表的 join 查询, 针对于非唯一或非主键索引, 或者是使用了 最左前缀
规则索引的查询.
比如对bcd创建了联合索引作为次要索引,bcd的b+树叶子节点就是存放的主键的值,然后根据主键再去主键的b+树查找值,对bcd进行范围查询时会获得多个主键,每次都再根据多个主键查找主键b+树有可能会耗时更久。
bcd是按顺序建立b+树的,因为B+树先是按照b列的值排序的,在b列的值相同的情况下才使用c列进行排序,也就是说b列的值不同的记录 中c的值可能是无序的。而现在select * from t1 where c = 1;这种跳过b列直接根据c的值去查找的操作是做不到的。
另外假设对b去匹配%sdfa%也是不能用索引的,因为开始%不能确定顺序。
几个SQL语句,要么全部执行成功,要么全部执行失败。比如银行转账就是事务的典型场景。
set autocommit = 0 //停止自动提交
BEIGIN;
SAVEPOINT
sql 语句;
rollback (可选)
commit
如果一个数据库声称支持事务的操作, 那么该数据库必须要具备以下四个特性:
- 原子性(Atomicity): 事务是最小的执行单位,不允许分割。事务的原子性确保动作要么全部完成,要么完全不起作用;
- 一致性(Consistency): 执行事务前后,数据保持一致,多个事务对同一个数据读取的结果是相同的;
- 隔离性(Isolation): 并发访问数据库时,一个用户的事务不被其他事务所干扰,各并发事务之间数据库是独立的;
- 持久性(Durability): 一个事务被提交之后。它对数据库中数据的改变是持久的,即使数据库发生故障也不应该对其有任何影响。
并行问题:
- 脏读(Dirty read): 当一个事务正在访问数据并且对数据进行了修改,而这种修改还没有提交到数据库中,这时另外一个事务也访问了这个数据,然后使用了这个数据。因为这个数据是还没有提交的数据,那么另外一个事务读到的这个数据是“脏数据”,依据“脏数据”所做的操作可能是不正确的。
- 丢失修改(Lost to modify): 指在一个事务读取一个数据时,另外一个事务也访问了该数据,那么在第一个事务中修改了这个数据后,第二个事务也修改了这个数据。这样第一个事务内的修改结果就被丢失,因此称为丢失修改。 例如:事务1读取某表中的数据A=20,事务2也读取A=20,事务1修改A=A-1,事务2也修改A=A-1,最终结果A=19,事务1的修改被丢失。
- 不可重复读(Unrepeatableread): 指在一个事务内多次读同一数据。在这个事务还没有结束时,另一个事务也访问该数据。那么,在第一个事务中的两次读数据之间,由于第二个事务的修改导致第一个事务两次读取的数据可能不太一样。这就发生了在一个事务内两次读到的数据是不一样的情况,因此称为不可重复读。
- 幻读(Phantom read): 幻读与不可重复读类似。它发生在一个事务(T1)读取了几行数据,接着另一个并发事务(T2)插入了一些数据时。在随后的查询中,第一个事务(T1)就会发现多了一些原本不存在的记录,就好像发生了幻觉一样,所以称为幻读。
SQL 标准定义了四个隔离级别:
- READ-UNCOMMITTED(读取未提交): 最低的隔离级别,允许读取尚未提交的数据变更,可能会导致脏读、幻读或不可重复读。
- READ-COMMITTED(读取已提交): 允许读取并发事务已经提交的数据,可以阻止脏读,但是幻读或不可重复读仍有可能发生。
- REPEATABLE-READ(可重复读): 对同一字段的多次读取结果都是一致的,除非数据是被本身事务自己所修改,可以阻止脏读和不可重复读,但幻读仍有可能发生。(默认)mysql 的幻读并非什么读取两次返回结果集不同,而是事务在插入事先检测不存在的记录时,惊奇的发现这些数据已经存在了,之前的检测读获取到的数据如同鬼影一般。
- SERIALIZABLE(可串行化): 最高的隔离级别,完全服从ACID的隔离级别。所有的事务依次逐个执行,这样事务之间就完全不可能产生干扰,也就是说,该级别可以防止脏读、不可重复读以及幻读。
行数据第一个字段存放该行地址和不同列数据的偏移地址,配合null字段来识别不同行的数据
针对读取已提交隔离级别而言)每一行数据都有一个事务ID字段,存放最近一次修改的事务是那个,rollback指针指向之前修改事务的记录,被称为版本链:
每个事务读取时保存一个readview, 包括了当前没有提交的事务的mids,基于这个id在版本链中便可以查询数据,找到mids中没有的事务id,就代表了这个事务id没有被提交,可以读取。每次一个事务被提交,下次另一个事务查询时就会从readview中删除已提交事务的id,或者说重新获取未提交的事务的id;
可重复读) 就会在多次读取时都获得第一次读取的readview
重做日志用来实现事务的持久性,即D特性。由两部分组成:
①内存中的重做日志缓冲 ②重做日志文件
一看有内存和磁盘上的两个对应实体,我们就知道这样做一定是为了效率考虑,因为内存的读写效率要比磁盘读写效率高太多。
Innodb是支持事务的存储引擎,在事务提交时,必须先将该事务的所有日志写入到redo日志文件中,待事务的commit操作完成才算整个事务操作完成。在每次将redo log buffer写入redo log file后,都需要调用一次fsync操作,因为重做日志缓冲只是把内容先写入操作系统的缓冲系统中,并没有确保直接写入到磁盘上,所以必须进行一次fsync操作。因此,磁盘的性能在一定程度上也决定了事务提交的性能。
在InnoDB存储引擎中,重做日志都是以512字节为单位进行存储的,这意味着重做日志缓存、重做日志文件块都是以块(block)的方式进行保存的,称为重做日志块(redo log block)。每块的大小512字节。由于重做日志块的大小和磁盘扇区大小一样,都是512字节,因此重做日志的写入可以保证原子性,不需要double write技术。
每个重做日志块的内容快除了日志记录本身之外,还由日志块头(log block header)及日志块尾(log block tailer)两部分组成。重做日志头一共占用12字节,重做日志尾占用8字节。这两部分是固定的。故每个重做日志块实际可以存储的大小为492字节(512-12-8)。
InnoDB存储引擎在启动时不管上次数据运行是否正常关闭,都会尝试进行恢复操作,因为重做日志记录的是物理日志(不要纠结这个),因此恢复的速度比逻辑日志,如二进制日志要快的多,于此同时,InnoDB存储引擎自身也对恢复进行了一定程度的优化,如顺序读取及并行应用重做日志,这样可以进一步提高数据库恢复的速度。由于checkpoint表示已经刷新到磁盘页上的LSN,因此在 恢复过程中仅需恢复checkpoint开始的日志部分。对于图中的例子,当数据库在checkpoint的LSN为10 000时发生宕机,恢复操作仅恢复LSN 10000~13000范围内的日志。
它可以实现如下两个功能: 1.实现事务回滚 2.实现MVCC
undo log和redo log记录物理日志不一样,它是逻辑日志。可以认为当delete一条记录时,undo log中会记录一条对应的insert记录,反之亦然,当update一条记录时,它记录一条对应相反的update记录。
当执行回滚时,就可以从undo log中的逻辑记录读取到相应的内容并进行回滚。有时候应用到行版本控制的时候,也是通过undo log来实现的:当读取的某一行被其他事务锁定时,它可以从undo log中分析出该行记录以前的数据是什么,从而提供该行版本信息,帮助用户实现一致性非锁定读取。
mysql锁机制分为:
表级锁: 开销小,加锁快;不会出现死锁;锁定粒度大,发生锁冲突的概率最高,并发度最低。MyISAM默认
行级锁: 开销大,加锁慢;会出现死锁;锁定粒度最小,发生锁冲突的概率最低,并发度也最高。InnoDb默认
页级锁:开销和加锁时间界于表锁和行锁之间;会出现死锁;锁定粒度界于表锁和行锁之间,并发度一般。
共享锁又称为读锁,简称S锁,顾名思义,共享锁就是多个事务对于同一数据可以共享一把锁,都能访问到数据,但是只能读不能修改。
排他锁又称为写锁,简称X锁,顾名思义,排他锁就是不能与其他锁并存,如果不获取锁的操作可以进行,如一个事务获取了一个数据行的排他锁,其他事务就不能再获取该行的其他锁,包括共享锁和排他锁,但是获取排他锁的事务是可以对数据就行读取和修改。排他锁指的是一个事务在一行数据加上排他锁后,其他事务不能再在其上加其他的锁。mysql InnoDB引擎默认的修改数据语句,update,delete,insert都会自动给涉及到的数据加上排他锁,其中insert加隐式锁,仅仅是insert时不上锁但在其他操作来获取锁时才会上锁,select语句默认不会加任何锁类型,如果加排他锁可以使用select ...for update语句,加共享锁可以使用select ... lock in share mode语句。所以加过排他锁的数据行在其他事务种是不能修改数据的,也不能通过for update和lock in share mode锁的方式查询数据,但可以直接通过select ...from...查询数据,因为普通查询没有任何锁机制。可重复读对间隙也会加锁。
间隙锁:
间隙锁(Gap Lock)是Innodb在可重复读级别提交下为了解决幻读问题时引入的锁机制,幻读的问题存在是因为新增或者更新操作,这时如果进行范围查询的时候(加锁查询),会出现不一致的问题,这时使用不同的行锁已经没有办法满足要求,需要对一定范围内的数据进行加锁,间隙锁就是解决这类问题的。在可重复读隔离级别下,数据库是通过行锁和间隙锁共同组成的。
1.加锁的基本单位是(next-key lock),他是前开后闭原则
2.插叙过程中访问的对象会增加锁
3.索引上的等值查询--给唯一索引加锁的时候,next-key lock升级为行锁
4.索引上的等值查询--向右遍历时最后一个值不满足查询需求时,next-key lock 退化为间隙锁
5.唯一索引上的范围查询会访问到不满足条件的第一个值为止
id(主键) | c(普通索引) | d(无索引) |
---|---|---|
5 | 5 | 5 |
10 | 10 | 10 |
15 | 15 | 15 |
20 | 20 | 20 |
25 | 25 | 25 |
以上数据为了解决幻读问题,更新的时候不只是对上述的五条数据增加行锁,还对于中间的取值范围增加了6间隙锁,(-∞,5](5,10](10,15](15,20](20,25](25,+supernum] (其中supernum是数据库维护的最大的值。为了保证间隙锁都是左开右闭原则。)
死锁:
事务A: select * from t where id = 11 for update; 事务A会对数据库表增加(10,15]这个区间锁,这时insert id = 12 的数据的时候就会因为区间锁(10,15]而被锁住无法执行。不同于写锁相互之间是互斥的原则,间隙锁之间不是互斥的,如果一个事务A获取到了(5,10]之间的间隙锁,另一个事务B也可以获取到(5,10]之间的间隙锁。这时就可能会发生死锁问题,如下案例。 事务A获取到(5,10]之间的间隙锁不允许其他的DDL操作,在事务提交,间隙锁释放之前,事务B也获取到了间隙锁(5,10],这时两个事务就处于死锁状态。
锁退化:
1.加锁的范围是(5,10]的范围锁 2.由于数据是等值查询,并且表中最后数据id = 10 不满足id= 7的查询要求,故id=10 的行级锁退化为间隙锁,(5,10) 3.所以事务B中id=8会被锁住,而id=10的时候不会被锁住
1.加锁的范围是(0,5],(5,10]的范围锁 2.由于c是普通索引,根据原则4,搜索到5后继续向后遍历直到搜索到10才放弃,故加锁范围为(5,10] 3.由于查询是等值查询,并且最后一个值不满足查询要求,故间隙锁退化为(5,10) 4.因为加锁是对普通索引c加锁,而且因为索引覆盖,没有对主键进行加锁,所以事务B执行正常 5.因为加锁范围(5,10)故事务C执行阻塞 6.需要注意的是,lock in share mode 因为覆盖索引故没有锁主键索引,如果使用for update 程序会觉得之后会执行更新操作故会将主键索引一同锁住
next-key lock 增加范围锁(5,10]
根据原则5,唯一索引的范围查询会到第一个不符合的值位置,故增加(10,15] 3.因为等值查询有id =10 根据原则3间隙锁升级为行锁,故剩余锁[10,15] 4.因为查询并不是等值查询,故[10,15]不会退化成[10,15) 5.故事务B(13,13,13)阻塞,事务C阻塞
1.next-key lock 增加范围锁(5,10],(10,15] 2.因为c是非唯一索引,故(5,10]不会退化为10 3.因为查询并不是等值查询,故[10,15]不会退化成[10,15) 4.所以事务B和事务C全部堵塞
意向锁:
事务A锁住了表中的一行,让这一行只能读,不能写。之后,事务B申请整个表的写锁。如果事务B申请成功,那么理论上它就能修改表中的任意一行,这与A持有的行锁是冲突的。数据库需要避免这种冲突,就是说要让B的申请被阻塞,直到A释放了行锁。数据库要怎么判断这个冲突呢?
普通认为两步:step1:判断表是否已被其他事务用表锁锁表。step2:判断表中的每一行是否已被行锁锁住。但是这样的方法效率很低,因为要遍历整个表。
所以解决方案是:意向锁。
在意向锁存在的情况下,事务A必须先申请表的意向共享锁,成功后再申请一行的行锁。
在意向锁存在的情况下,两步骤为:step1:判断表是否已被其他事务用表锁锁表。step2:发现表上有意向共享锁,说明表中有些行被共享行锁锁住了,因此,事务B申请表的写锁会被阻塞。
死锁避免:
1)在应用中,如果不同的程序会并发存取多个表,应尽量约定以相同的顺序为访问表,这样可以大大降低产生死锁的机会。如果两个session访问两个表的顺序不同,发生死锁的机会就非常高!但如果以相同的顺序来访问,死锁就可能避免。 2)在程序以批量方式处理数据的时候,如果事先对数据排序,保证每个线程按固定的顺序来处理记录,也可以大大降低死锁的可能。 3)在事务中,如果要更新记录,应该直接申请足够级别的锁,即排他锁,而不应该先申请共享锁,更新时再申请排他锁,甚至死锁。 4)在REPEATEABLE-READ隔离级别下,如果两个线程同时对相同条件记录用SELECT…ROR UPDATE加排他锁,在没有符合该记录情况下,两个线程都会加锁成功。程序发现记录尚不存在,就试图插入一条新记录,如果两个线程都这么做,就会出现死锁。这种情况下,将隔离级别改成READ COMMITTED,就可以避免问题。 5)当隔离级别为READ COMMITED时,如果两个线程都先执行SELECT…FOR UPDATE,判断是否存在符合条件的记录,如果没有,就插入记录。此时,只有一个线程能插入成功,另一个线程会出现锁等待,当第1个线程提交后,第2个线程会因主键重出错,但虽然这个线程出错了,却会获得一个排他锁!这时如果有第3个线程又来申请排他锁,也会出现死锁。对于这种情况,可以直接做插入操作,然后再捕获主键重异常,或者在遇到主键重错误时,总是执行ROLLBACK释放获得的排他锁。
视图实际上是在数据库中通过Select查询语句从多张表中提取的多个表字段所组成的虚拟表
视图是一种基于数据表的一种虚表
- (1)视图是一种虚表
- (2)视图建立在已有表的基础上, 视图赖以建立的这些表称为基表
- (3)向视图提供数据内容的语句为 SELECT 语句,可以将视图理解为存储起来的 SELECT 语句
- (4)视图向用户提供基表数据的另一种表现形式
- (5)视图没有存储真正的数据,真正的数据还是存储在基表中
- (6)程序员虽然操作的是视图,但最终视图还会转成操作基表
- (7)一个基表可以有0个或多个视图
有的时候,我们可能只关系一张数据表中的某些字段,而另外的一些人只关系同一张数据表的某些字段...
那么把全部的字段都都显示给他们看,这是不合理的。
我们在查询数据的时候,常常需要编写非常长的SQL语句,几乎每次都要写很长很长....上面已经说了,视图就是基于查询的一种虚表,也就是说,视图可以将查询出来的数据进行封装。。。那么我们在使用的时候就会变得非常方便...
值得注意的是:使用视图可以让我们专注与逻辑,但不提高查询效率
- 第一范式:字段是最小的的单元不可再分
- 学生信息组成学生信息表,有年龄、性别、学号等信息组成。这些字段都不可再分,所以它是满足第一范式的
- 第二范式:满足第一范式,表中的字段必须完全依赖于全部主键而非部分主键。
- 其他字段组成的这行记录和主键表示的是同一个东西,而主键是唯一的,它们只需要依赖于主键,也就成了唯一的
- 考虑一个订单明细表:【OrderDetail】(OrderID,ProductID,UnitPrice,Discount,Quantity,ProductName)。 因为我们知道在一个订单中可以订购多种产品,所以单单一个 OrderID 是不足以成为主键的,主键应该是(OrderID,ProductID)。显而易见 Discount(折扣),Quantity(数量)完全依赖(取决)于主键(OderID,ProductID),而 UnitPrice,ProductName 只依赖于 ProductID。所以 OrderDetail 表不符合 2NF。不符合 2NF 的设计容易产生冗余数据。
- 第三范式:满足第二范式,非主键外的所有字段必须互不依赖
- 就是数据只在一个地方存储,不重复出现在多张表中,可以认为就是消除传递依赖
- 首先是 2NF,另外非主键列必须直接依赖于主键,不能存在传递依赖。即不能存在:非主键列 A 依赖于非主键列 B,非主键列 B 依赖于主键的情况。 考虑一个订单表【Order】(OrderID,OrderDate,CustomerID,CustomerName,CustomerAddr,CustomerCity)主键是(OrderID)。 其中 OrderDate,CustomerID,CustomerName,CustomerAddr,CustomerCity 等非主键列都完全依赖于主键(OrderID),所以符合 2NF。不过问题是 CustomerName,CustomerAddr,CustomerCity 直接依赖的是 CustomerID(非主键列),而不是直接依赖于主键,它是通过传递才依赖于主键,所以不符合 3NF。 通过拆分【Order】为【Order】(OrderID,OrderDate,CustomerID)和【Customer】(CustomerID,CustomerName,CustomerAddr,CustomerCity)从而达到 3NF
存储引擎 特征 MyISAM 高速引擎,不支持事务处理 InnoDB 支持行锁定以及事务处理,速度比MyISAM稍慢 ISAM MyISAM的前身 MERGE 将多个MyISAM类型的表作为一个表来处理的引擎 MEMORY,HEAP 只在内存上保存数据 Falcon 一种新的存储引擎,支持事务处理 ARCHIVE 将数据压缩后保存(只能支持INSERT/SELECT操作 CSV 以CSV形式保存数据(应用于跨平台数据交换)
MyISAM是MySQL的默认数据库引擎(5.5版之前)。虽然性能极佳,而且提供了大量的特性,包括全文索引、压缩、空间函数等,但MyISAM不支持事务和行级锁,而且最大的缺陷就是崩溃后无法安全恢复。不过,5.5版本之后,MySQL引入了InnoDB(事务性数据库引擎),MySQL 5.5版本后默认的存储引擎为InnoDB。
大多数时候我们使用的都是 InnoDB 存储引擎,但是在某些情况下使用 MyISAM 也是合适的比如读密集的情况下。(如果你不介意 MyISAM 崩溃恢复问题的话)。
1.InnoDB支持事务,MyISAM不支持,对于InnoDB每一条SQL语言都默认封装成事务,自动提交,这样会影响速度,所以最好把多条SQL语言放在begin和commit之间,组成一个事务;
2.InnoDB支持外键,而MyISAM不支持。对一个包含外键的InnoDB表转为MYISAM会失败;
3.InnoDB是聚集索引,使用B+Tree作为索引结构,数据文件是和(主键)索引绑在一起的(表数据文件本身就是按B+Tree组织的一个索引结构),必须要有主键,通过主键索引效率很高。但是辅助索引需要两次查询,先查询到主键,然后再通过主键查询到数据。因此,主键不应该过大,因为主键太大,其他索引也都会很大。
MyISAM是非聚集索引,也是使用B+Tree作为索引结构,索引和数据文件是分离的,索引保存的是数据文件的指针。主键索引和辅助索引是独立的。
也就是说:InnoDB的B+树主键索引的叶子节点就是数据文件,辅助索引的叶子节点是主键的值;而MyISAM的B+树主键索引和辅助索引的叶子节点都是数据文件的地址指针。
InnoDB不保存表的具体行数,执行select count(*) from table时需要全表扫描。而MyISAM用一个变量保存了整个表的行数,执行上述语句时只需要读出该变量即可,速度很快(注意不能加有任何WHERE条件);
5. Innodb不支持全文索引,而MyISAM支持全文索引,在涉及全文索引领域的查询效率上MyISAM速度更快高;PS:5.7以后的InnoDB支持全文索引了
6. MyISAM表格可以被压缩后进行查询操作
7. InnoDB支持表、行(默认)级锁,而MyISAM支持表级锁
表级锁和行级锁对比:
- 表级锁: MySQL中锁定 粒度最大 的一种锁,对当前操作的整张表加锁,实现简单,资源消耗也比较少,加锁快,不会出现死锁。其锁定粒度最大,触发锁冲突的概率最高,并发度最低,MyISAM和 InnoDB引擎都支持表级锁。
- 行级锁: MySQL中锁定 粒度最小 的一种锁,只针对当前操作的行进行加锁。 行级锁能大大减少数据库操作的冲突。其加锁粒度最小,并发度高,但加锁的开销也最大,加锁慢,会出现死锁。
- InnoDB存储引擎的锁的算法有三种:
- Record lock:单个行记录上的锁
- Gap lock:间隙锁,锁定一个范围,不包括记录本身
- Next-key lock:record+gap 锁定一个范围,包含记录本身
8、InnoDB表必须有主键(用户没有指定的话会自己找或生产一个主键),而Myisam可以没有
9、Innodb存储文件有frm、ibd,而Myisam是frm、MYD、MYI
Innodb:frm是表定义文件,ibd是数据文件
Myisam:frm是表定义文件,myd是数据文件,myi是索引文件
MySQL索引使用的数据结构主要有BTree索引 和 哈希索引 。对于哈希索引来说,底层的数据结构就是哈希表,因此在绝大多数需求为单条记录查询的时候,可以选择哈希索引,查询性能最快;其余大部分场景,建议选择BTree索引。
MySQL的BTree索引使用的是B树中的B+Tree,但对于主要的两种存储引擎的实现方式是不同的。
- MyISAM: B+Tree叶节点的data域存放的是数据记录的地址。在索引检索的时候,首先按照B+Tree搜索算法搜索索引,如果指定的Key存在,则取出其 data 域的值,然后以 data 域的值为地址读取相应的数据记录。这被称为“非聚簇索引”。
- InnoDB: 其数据文件本身就是索引文件。相比MyISAM,索引文件和数据文件是分离的,其表数据文件本身就是按B+Tree组织的一个索引结构,树的叶节点data域保存了完整的数据记录。这个索引的key是数据表的主键,因此InnoDB表数据文件本身就是主索引。这被称为“聚簇索引(或聚集索引)”。而其余的索引都作为辅助索引,辅助索引的data域存储相应记录主键的值而不是地址,这也是和MyISAM不同的地方。在根据主索引搜索时,直接找到key所在的节点即可取出数据;在根据辅助索引查找时,则需要先取出主键的值,再走一遍主索引。 因此,在设计表的时候,不建议使用过长的字段作为主键,也不建议使用非单调的字段作为主键,这样会造成主索引频繁分裂。
- 超键:在关系中能唯一标识元组的属性集称为关系模式的超键。一个属性可以为作为一个超键,多个属性组合在一起也可以作为一个超键。超键包含候选键和主键。
- 候选键(候选码):是最小超键,即没有冗余元素的超键。
- 主键(主码):数据库表中对储存数据对象予以唯一和完整标识的数据列或属性的组合。一个数据列只能有一个主键,且主键的取值不能缺失,即不能为空值(Null)。
- 外键:在一个表中存在的另一个表的主键称此表的外键
- NOT NULL: 用于控制字段的内容一定不能为空(NULL)。
- UNIQUE: 控件字段内容不能重复,一个表允许有多个 Unique 约束。
- PRIMARY KEY: 也是用于控件字段内容不能重复,但它在一个表只允许出现一个。
- FOREIGN KEY: 用于预防破坏表之间连接的动作,也能防止非法数据插入外键列,因为它必须是它指向的那个表中的值之一。
- CHECK: 用于控制字段的值范围。
left join(左联接) 返回包括左表中的所有记录和右表中联结字段相等的记录 right join(右联接) 返回包括右表中的所有记录和左表中联结字段相等的记录 inner join(等值连接) 只返回两个表中联结字段相等的行
**相同点:**truncate和不带where子句的delete、以及drop都会删除表内的数据。drop、truncate都是DDL语句(数据定义语言),执行后会自动提交。
不同点:
1.delete语句执行删除的过程是每次从表中删除一行,并且同时将该行的删除操作作为事务记录在日志中保存以便进行进行回滚操作。事务提交后才生效。如果有相应的 tigger,执行的时候将被触发。truncate table则一次性地从表中删除所有的数据并不把单独的删除操作记录记入日志保存,删除后是不能恢复的。并且在删除的过程中不会激活与表有关的删除触发器。执行速度快。
3.当表被truncate 后,这个表和索引所占用的空间会恢复到初始大小, delete操作不会减少表或索引所占用的空间。 drop 语句将表所占用的空间全释放掉。
4.truncate 和delete只删除数据,drop 则删除整个表(结构和数据)。drop语句将删除表的结构被依赖的约束(constrain),触发器(trigger)索引(index);依赖于该表的存储过程/函数将被保留,但其状态会变为:invalid。truncate、drop 是数据库定义语言(ddl),操作立即生效,原数据不放到 rollback segment 中,不能回滚,操作不触发 trigger。
5.速度,一般来说: drop> truncate > delete;
6.TRUNCATE TABLE 在功能上与不带 WHERE 子句的 DELETE 语句相同:二者均删除表中的全部行。但 TRUNCATE TABLE 比 DELETE 速度快,且使用的系统和事务日志资源少。DELETE 语句每次删除一行,并在事务日志中为所删除的每行记录一项。TRUNCATE TABLE 通过释放存储表数据所用的数据页来删除数据,并且只在事务日志中记录页的释放
- 选择最有效率的表名顺序
数据库的解析器按照从右到左的顺序处理FROM子句中的表名,FROM子句中写在最后的表将被最先处理
在FROM子句中包含多个表的情况下:
- 如果三个表是完全无关系的话,将记录和列名最少的表,写在最后,然后依次类推
- 也就是说:选择记录条数最少的表放在最后
如果有3个以上的表连接查询:
- 如果三个表是有关系的话,将引用最多的表,放在最后,然后依次类推。
- 也就是说:被其他表所引用的表放在最后
- WHERE子句中的连接顺序
数据库采用自右而左的顺序解析WHERE子句,根据这个原理,表之间的连接必须写在其他WHERE条件之左,那些可以过滤掉最大数量记录的条件必须写在WHERE子句的之右。
- SELECT子句中避免使用*号
我们当时学习的时候,“*”号是可以获取表中全部的字段数据的。
- 但是它要通过查询数据字典完成的,这意味着将耗费更多的时间
- 使用*号写出来的SQL语句也不够直观。
- 用TRUNCATE替代DELETE
这里仅仅是:删除表的全部记录,除了表结构才这样做。
DELETE是一条一条记录的删除,而Truncate是将整个表删除,保留表结构,这样比DELETE快
- 多使用内部函数提高SQL效率
例如使用mysql的concat()函数会比使用||来进行拼接快,因为concat()函数已经被mysql优化过了。
- 使用表或列的别名
如果表或列的名称太长了,使用一些简短的别名也能稍微提高一些SQL的性能。毕竟要扫描的字符长度就变少了。。。
- 多使用commit
comiit会释放回滚点...
- 善用索引
索引就是为了提高我们的查询数据的,当表的记录量非常大的时候,我们就可以使用索引了。
- SQL写大写
我们在编写SQL 的时候,官方推荐的是使用大写来写关键字,因为Oracle服务器总是先将小写字母转成大写后,才执行
- 避免在索引列上使用NOT
因为Oracle服务器遇到NOT后,他就会停止目前的工作,转而执行全表扫描
当MySQL单表记录数过大时,数据库的CRUD性能会明显下降,一些常见的优化措施如下:
- 限定数据的范围
务必禁止不带任何限制数据范围条件的查询语句。比如:我们当用户在查询订单历史的时候,我们可以控制在一个月的范围内;
- 读/写分离
经典的数据库拆分方案,主库负责写,从库负责读;
- 垂直分区
根据数据库里面数据表的相关性进行拆分。 例如,用户表中既有用户的登录信息又有用户的基本信息,可以将用户表拆分成两个单独的表,甚至放到单独的库做分库。简单来说垂直拆分是指数据表列的拆分,把一张列比较多的表拆分为多张表。
- 垂直拆分的优点: 可以使得列数据变小,在查询时减少读取的Block数,减少I/O次数。此外,垂直分区可以简化表的结构,易于维护。
- 垂直拆分的缺点: 主键会出现冗余,需要管理冗余列,并会引起Join操作,可以通过在应用层进行Join来解决。此外,垂直分区会让事务变得更加复杂
- 水平分区
保持数据表结构不变,通过某种策略存储数据分片。这样每一片数据分散到不同的表或者库中,达到了分布式的目的。 水平拆分可以支撑非常大的数据量。
水平拆分是指数据表行的拆分,表的行数超过200万行时,就会变慢,这时可以把一张的表的数据拆成多张表来存放。举个例子:我们可以将用户信息表拆分成多个用户信息表,这样就可以避免单一表数据量过大对性能造成影响。水平拆分可以支持非常大的数据量。需要注意的一点是:分表仅仅是解决了单一表数据过大的问题,但由于表的数据还是在同一台机器上,其实对于提升MySQL并发能力没有什么意义,所以 水平拆分最好分库 。
水平拆分能够 支持非常大的数据量存储,应用端改造也少,但 分片事务难以解决 ,跨节点Join性能较差,逻辑复杂。《Java工程师修炼之道》的作者推荐 尽量不要对数据进行分片,因为拆分会带来逻辑、部署、运维的各种复杂度 ,一般的数据表在优化得当的情况下支撑千万以下的数据量是没有太大问题的。如果实在要分片,尽量选择客户端分片架构,这样可以减少一次和中间件的网络I/O。
下面补充一下数据库分片的两种常见方案:
- 客户端代理: 分片逻辑在应用端,封装在jar包中,通过修改或者封装JDBC层来实现。 当当网的 Sharding-JDBC 、阿里的TDDL是两种比较常用的实现。
- 中间件代理: 在应用和数据中间加了一个代理层。分片逻辑统一维护在中间件服务中。 我们现在谈的 Mycat 、360的Atlas、网易的DDB等等都是这种架构的实现。
每个SQL执行都需要消耗一定I/O资源,SQL执行的快慢,决定资源被占用时间的长短。假设总资源是100,有一条慢SQL占用了30的资源共计1分钟。那么在这1分钟时间内,其他SQL能够分配的资源总量就是70,如此循环,当资源分配完的时候,所有新的SQL执行将会排队等待。 从应用的角度看:SQL执行时间长意味着等待,在OLTP应用当中,用户的体验较差。主要原因包括:
**1,数据库CPU负载高。**一般是查询语句中有很多计算逻辑,导致数据库cpu负载。
**2,IO负载高导致服务器卡住。**这个一般和全表查询没索引有关系。
**3,查询语句正常,索引正常但是还是慢。**如果表面上索引正常,但是查询慢,需要看看是否索引没有生效。
最左前缀匹配原则,非常重要的原则,mysql会一直向右匹配直到遇到范围查询(>、<、between、like)就停止匹配,比如a = 1 and b = 2 and c > 3 and d = 4 如果建立(a,b,c,d)顺序的索引,d是用不到索引的,如果建立(a,b,d,c)的索引则都可以用到,a,b,d的顺序可以任意调整;
=和in可以乱序,比如a = 1 and b = 2 and c = 3 建立(a,b,c)索引可以任意顺序,mysql的查询优化器会帮你优化成索引可以识别的形式;
尽量选择区分度高的列作为索引,区分度的公式是count(distinct col)/count(*),表示字段不重复的比例,比例越大我们扫描的记录数越少,唯一键的区分度是1,而一些状态、性别字段可能在大数据面前区分度就是0,那可能有人会问,这个比例有什么经验值吗?使用场景不同,这个值也很难确定,一般需要join的字段我们都要求是0.1以上,即平均1条扫描10条记录;
索引列不能参与计算,保持列“干净”,比如from_unixtime(create_time) = ’2014-05-29’就不能使用到索引,原因很简单,b+树中存的都是数据表中的字段值,但进行检索时,需要把所有元素都应用函数才能比较,显然成本太大。所以语句应该写成create_time = unix_timestamp(’2014-05-29’);
尽量的扩展索引,不要新建索引。比如表中已经有a的索引,现在要加(a,b)的索引,那么只需要修改原来的索引即可。
步骤:
\1. 打开慢日志查询,确定是否有SQL语句占用了过多资源,如果是,在不改变业务原意的前提下,对insert、group by、order by、join等语句进行优化。
\2. 考虑调整MySQL的系统参数: innodb_buffer_pool_size、innodb_log_file_size、table_cache等。
\3. 确定是否是因为高并发引起行锁的超时问题。
\4. 如果数据量过大,需要考虑进一步的分库分表
redis 就是一个数据库,不过与传统数据库不同的是 redis 的数据是存在内存中的,所以读写速度非常快,因此 redis 被广泛应用于缓存方向。
缓存就是数据交换的缓冲区(称作Cache),当某一硬件要读取数据时,会首先从缓存中查找需要的数据,如果找到了则直接执行,找不到的话则从内存中找。由于缓存的运行速度比内存快得多,故缓存的作用就是帮助硬件更快地运行。
因为缓存往往使用的是RAM(断电即掉的非永久储存),所以在用完后还是会把文件送到硬盘等存储器里永久存储。电脑里最大的缓存就是内存条了,最快的是CPU上镶的L1和L2缓存,显卡的显存是给显卡运算芯片用的缓存,硬盘上也有16M或者32M的缓存。
CACHE是在CPU中速度非常块,而容量却很小的一种存储器,它是计算机存储器中最强悍的存储器。由于技术限制,容量很难提升。
另外,redis 也经常用来做分布式锁。redis 提供了多种数据类型来支持不同的业务场景。除此之外,redis 支持事务 、持久化、LUA脚本、LRU驱动事件、多种集群方案。之所以用于缓存中,主要是为了高性能(第二次读取从缓存中读取更快)和高并发(直接操作缓存能够承受的请求是远远大于直接访问数据库的)。
缓存分为本地缓存和分布式缓存。以 Java 为例,使用自带的 map 或者 guava 实现的是本地缓存,最主要的特点是轻量以及快速,生命周期随着 jvm 的销毁而结束,并且在多实例的情况下,每个实例都需要各自保存一份缓存,缓存不具有一致性。使用 redis 或 memcached 之类的称为分布式缓存,在多实例的情况下,各实例共用一份缓存数据,缓存具有一致性。缺点是需要保持 redis 或 memcached服务的高可用,整个程序架构上较为复杂。
redis 内部使用文件事件处理器 file event handler
,这个文件事件处理器是单线程的,所以 redis 才叫做单线程的模型。它采用 IO 多路复用机制同时监听多个 socket,根据 socket 上的事件来选择对应的事件处理器进行处理。
文件事件处理器的结构包含 4 个部分:
- 多个 socket
- IO 多路复用程序
- 文件事件分派器
- 事件处理器(连接应答处理器、命令请求处理器、命令回复处理器)
多个 socket 可能会并发产生不同的操作,每个操作对应不同的文件事件,但是 IO 多路复用程序会监听多个 socket,会将 socket 产生的事件放入队列中排队,事件分派器每次从队列中取出一个事件,把该事件交给对应的事件处理器进行处理。
与memcached的区别:
- redis支持更丰富的数据类型(支持更复杂的应用场景):Redis不仅仅支持简单的k/v类型的数据,同时还提供list,set,zset,hash等数据结构的存储。memcache支持简单的数据类型,String。
- Redis支持数据的持久化,可以将内存中的数据保持在磁盘中,重启的时候可以再次加载进行使用,而Memecache把数据全部存在内存之中。
- 集群模式:memcached没有原生的集群模式,需要依靠客户端来实现往集群中分片写入数据;但是 redis 目前是原生支持 cluster 模式的.
- Memcached是多线程,非阻塞IO复用的网络模型;Redis使用单线程的多路 IO 复用模型。
Redis 通过 MULTI、EXEC、WATCH 等命令来实现事务(transaction)功能。事务提供了一种将多个命令请求打包,然后一次性、按顺序地执行多个命令的机制,并且在事务执行期间,服务器不会中断事务而改去执行其他客户端的命令请求,它会将事务中的所有命令都执行完毕,然后才去处理其他客户端的命令请求。在 Redis 中,事务总是具有原子性(Atomicity)、一致性(Consistency)和隔离性(Isolation),并且当 Redis 运行在某种特定的持久化模式下时,事务也具有持久性(Durability)。但是redis同一个事务中如果有一条命令执行失败,其后的命令仍然会被执行,没有回滚。
五种存储结构:
1.String
常用命令: set,get,decr,incr,mget 等。
String数据结构是简单的key-value类型,value其实不仅可以是String,也可以是数字。 当字符串比较短的时候,len 和 alloc 可以使用 byte 和 short 来表示,**Redis 为了对内存做极致的优化,不同长度的字符串使用不同的结构体来表示。**常规key-value缓存应用; 常规计数:微博数,粉丝数等。
2.Hash
常用命令: hget,hset,hgetall 等。
hash 是一个 string 类型的 field 和 value 的映射表类似于hashmap,hash 特别适合用于存储对象,后续操作的时候,你可以直接仅仅修改这个对象中的某个字段的值。 比如我们可以 hash 数据结构来存储用户信息,商品信息等等。比如下面我就用 hash 类型存放了我本人的一些信息:
key=JavaUser293847
value={
“id”: 1,
“name”: “SnailClimb”,
“age”: 22,
“location”: “Wuhan, Hubei”
}
扩容时采用渐进式 rehash, 会在 rehash 的同时,保留新旧两个 hash 结构,查询时会同时查询两个 hash 结构,然后在后续的定时任务以及 hash 操作指令中,循序渐进的把旧字典的内容迁移到新字典中。当搬迁完成了,就会使用新的 hash 结构取而代之。正常情况下,当 hash 表中 元素的个数等于第一维数组的长度时,就会开始扩容,扩容的新数组是 原数组大小的 2 倍。不过如果 Redis 正在做 bgsave(持久化命令)
,为了减少内存也得过多分离,Redis 尽量不去扩容,但是如果 hash 表非常满了,达到了第一维数组长度的 5 倍了,这个时候就会 强制扩容。当 hash 表因为元素逐渐被删除变得越来越稀疏时,Redis 会对 hash 表进行缩容来减少 hash 表的第一维数组空间占用。所用的条件是 元素个数低于数组长度的 10%,缩容不会考虑 Redis 是否在做 bgsave
。
- 为
ht[1]
分配空间, 让字典同时持有ht[0]
和ht[1]
两个哈希表。 - 在字典中维持一个索引计数器变量
rehashidx
, 并将它的值设置为0
, 表示 rehash 工作正式开始。 - 在 rehash 进行期间, 每次对字典执行添加、删除、查找或者更新操作时, 程序除了执行指定的操作以外, 还会顺带将
ht[0]
哈希表在rehashidx
索引上的所有键值对 rehash 到ht[1]
, 当 rehash 工作完成之后, 程序将rehashidx
属性的值增一。 - 随着字典操作的不断执行, 最终在某个时间点上,
ht[0]
的所有键值对都会被 rehash 至ht[1]
, 这时程序将rehashidx
属性的值设为-1
, 表示 rehash 操作已完成。
渐进式 rehash 的好处在于它采取分而治之的方式, 将 rehash 键值对所需的计算工作均滩到对字典的每个添加、删除、查找和更新操作上, 从而避免了集中式 rehash 而带来的庞大计算量。
因为在进行渐进式 rehash 的过程中, 字典会同时使用 ht[0]
和 ht[1]
两个哈希表, 所以在渐进式 rehash 进行期间, 字典的删除(delete)、查找(find)、更新(update)等操作会在两个哈希表上进行: 比如说, 要在字典里面查找一个键的话, 程序会先在 ht[0]
里面进行查找, 如果没找到的话, 就会继续到 ht[1]
里面进行查找, 诸如此类。另外, 在渐进式 rehash 执行期间, 新添加到字典的键值对一律会被保存到 ht[1]
里面, 而 ht[0]
则不再进行任何添加操作: 这一措施保证了 ht[0]
包含的键值对数量会只减不增, 并随着 rehash 操作的执行而最终变成空表。
3.List
常用命令: lpush,rpush,lpop,rpop,lrange等
list 就是链表,Redis list 的应用场景非常多,也是Redis最重要的数据结构之一,比如微博的关注列表,粉丝列表,消息列表等功能都可以用Redis的 list 结构来实现。
Redis list 的实现为一个双向链表,即可以支持反向查找和遍历,更方便操作,不过带来了部分额外的内存开销。
另外可以通过 lrange 命令,就是从某个元素开始读取多少个元素,可以基于 list 实现分页查询,这个很棒的一个功能,基于 redis 实现简单的高性能分页,可以做类似微博那种下拉不断分页的东西(一页一页的往下走),性能高。
4.Set
常用命令: sadd,spop,smembers,sunion 等
set 对外提供的功能与list类似是一个列表的功能,特殊之处在于 set 是可以自动排重的。
当你需要存储一个列表数据,又不希望出现重复数据时,set是一个很好的选择,并且set提供了判断某个成员是否在一个set集合内的重要接口,这个也是list所不能提供的。可以基于 set 轻易实现交集、并集、差集的操作。
比如:在微博应用中,可以将一个用户所有的关注人存在一个集合中,将其所有粉丝存在一个集合。Redis可以非常方便的实现如共同关注、共同粉丝、共同喜好等功能。这个过程也就是求交集的过程,具体命令如下:
sinterstore key1 key2 key3 将交集存在key1内
5.Sorted Set (zset)
常用命令: zadd,zrange,zrem,zcard等
和set相比,sorted set增加了一个权重参数score,使得集合中的元素能够按score进行有序排列。
举例: 在直播系统中,实时排行信息包含直播间在线用户列表,各种礼物排行榜,弹幕消息(可以理解为按消息维度的消息排行榜)等信息,适合使用 Redis 中的 Sorted Set 结构进行存储。使用跳表实现。
我们 set key 的时候,都可以给一个 expire time,就是过期时间,通过过期时间我们可以指定这个 key 可以存活的时间。超时的数据则需要被删除:
- 定期删除:redis默认是每隔 100ms 就随机抽取一些设置了过期时间的key,检查其是否过期,如果过期就删除。注意这里是随机抽取的。为什么要随机呢?你想一想假如 redis 存了几十万个 key ,每隔100ms就遍历所有的设置过期时间的 key 的话,就会给 CPU 带来很大的负载!
- 惰性删除 :定期删除可能会导致很多过期 key 到了时间并没有被删除掉。所以就有了惰性删除。假如你的过期 key,靠定期删除没有被删除掉,还停留在内存里,除非你的系统去查一下那个 key,才会被redis给删除掉。这就是所谓的惰性删除,也是够懒的哈!
但是仅仅通过设置过期时间还是有问题的。我们想一下:如果定期删除漏掉了很多过期 key,然后你也没及时去查,也就没走惰性删除,此时会怎么样?如果大量过期key堆积在内存里,导致redis内存块耗尽了。怎么解决这个问题呢? redis 内存淘汰机制。
首先要配置maxmemory值
1.客户端发起了需要申请更多内存的命令(如set)。
2.Redis检查内存使用情况,如果已使用的内存大于maxmemory则开始根据用户配置的不同淘汰策略来淘汰内存(key),从而换取一定的内存。
3.如果上面都没问题,则这个命令执行成功。
- volatile-lru:从已设置过期时间的数据集(server.db[i].expires)中挑选最近最少使用的数据淘汰,没有设置过期时间的key不会被淘汰,这样就可以在增加内存空间的同时保证需要持久化的数据不会丢失。使用双向链表作为数据结构,插入时将元素插入到头部,查询时将元素也迁移到头部,这样一来,尾部剩余的元素就是相对使用不太频繁的元素。
- volatile-ttl:从已设置过期时间的数据集(server.db[i].expires)中挑选将要过期的数据淘汰,ttl值越大越优先被淘汰。
- volatile-random:从已设置过期时间的数据集(server.db[i].expires)中任意选择数据淘汰,当内存达到限制无法写入非过期时间的数据集时,可以通过该淘汰策略在主键空间中随机移除某个key。
- allkeys-lru:当内存不足以容纳新写入数据时,在键空间中,移除最近最少使用的key(这个是最常用的),该策略要淘汰的key面向的是全体key集合,而非过期的key集合。
- allkeys-random:从数据集(server.db[i].dict)中任意选择数据淘汰。
- no-eviction:禁止驱逐数据,也就是当内存不足以容纳新入数据时,新写入操作就会报错,请求可以继续进行,线上任务也不能持续进行,采用no-enviction策略可以保证数据不被丢失,这也是系统默认的一种淘汰策略。
- volatile-lfu:从已设置过期时间的数据集(server.db[i].expires)中挑选最不经常使用的数据淘汰
- allkeys-lfu:当内存不足以容纳新写入数据时,在键空间中,移除最不经常使用的key
使用场景:
- 在Redis中,数据有一部分访问频率较高,其余部分访问频率较低,或者无法预测数据的使用频率时,设置allkeys-lru是比较合适的。
- 如果所有数据访问概率大致相等时,可以选择allkeys-random。
- 如果研发者需要通过设置不同的ttl来判断数据过期的先后顺序,此时可以选择volatile-ttl策略。
- 如果希望一些数据能长期被保存,而一些数据可以被淘汰掉时,选择volatile-lru或volatile-random都是比较不错的。
- 由于设置expire会消耗额外的内存,如果计划避免Redis内存在此项上的浪费,可以选用allkeys-lru 策略,这样就可以不再设置过期时间,高效利用内存
Redis缓存功能,是由edis.c文件中的freeMemoryIfNeeded函数实现的。如果maxmemory被设置,那么每次在执行命令钱,该函数都会被调用来判断内存是否够用、释放内存、返回错误。如果没有足够的内存程序主逻辑将会阻止设置了REDIS_COM_DENYOOM flag的命令执行,对其返回command not allowed when used memory > ‘maxmemory’的错误消息。
区分不同的淘汰策略选择不同的key,Redis淘汰策略主要分为LRU淘汰、TTL淘汰、随机淘汰三种机制。
LRU淘汰
LRU(Least recently used,最近最少使用)算法根据数据的历史访问记录来进行淘汰数据,其核心思想是“如果数据最近被访问过,那么将来被访问的几率也更高”。
在服务器配置中保存了 lru 计数器 server.lrulock,会定时(redis 定时程序 serverCorn())更新,server.lrulock 的值是根据 server.unixtime 计算出来进行排序的,然后选择最近使用时间最久的数据进行删除。另外,从 struct redisObject 中可以发现,每一个 redis 对象都会设置相应的 lru。每一次访问数据,会更新对应redisObject.lru。
在Redis中,LRU算法是一个近似算法,默认情况下,Redis会随机挑选5个键,并从中选择一个最久未使用的key进行淘汰。在配置文件中,按maxmemory-samples选项进行配置,选项配置越大,消耗时间就越长,但结构也就越精准。
TTL淘汰
Redis 数据集数据结构中保存了键值对过期时间的表,即 redisDb.expires。与 LRU 数据淘汰机制类似,TTL 数据淘汰机制中会先从过期时间的表中随机挑选几个键值对,取出其中 ttl 最大的键值对淘汰。同样,TTL淘汰策略并不是面向所有过期时间的表中最快过期的键值对,而只是随机挑选的几个键值对。
随机淘汰
在随机淘汰的场景下获取待删除的键值对,随机找hash桶再次hash指定位置的dictEntry即可。
Redis中的淘汰机制都是几近于算法实现的,主要从性能和可靠性上做平衡,所以并不是完全可靠,所以开发者们在充分了解Redis淘汰策略之后还应在平时多主动设置或更新key的expire时间,主动删除没有价值的数据,提升Redis整体性能和空间。
很多时候我们需要持久化数据也就是将内存中的数据写入到硬盘里面,大部分原因是为了之后重用数据(比如重启机器、机器故障之后回复数据),或者是为了防止系统故障而将数据备份到一个远程位置。
Redis不同于Memcached的很重一点就是,Redis支持持久化,而且支持两种不同的持久化操作。Redis的一种持久化方式叫快照(snapshotting,RDB),另一种方式是只追加文件(append-only file,AOF)。
RDB:
Redis可以通过创建快照来获得存储在内存里面的数据在某个时间点上的副本。Redis创建快照之后,可以对快照进行备份,可以将快照复制到其他服务器从而创建具有相同数据的服务器副本(Redis主从结构,主要用来提高Redis性能),还可以将快照留在原地以便重启服务器的时候使用。快照持久化是Redis默认采用的持久化方式,在redis.conf配置文件中默认有此下配置:
save 900 1 #在900秒(15分钟)之后,如果至少有1个key发生变化,Redis就会自动触发BGSAVE命令创建快照。
save 300 10 #在300秒(5分钟)之后,如果至少有10个key发生变化,Redis就会自动触发BGSAVE命令创建快照。
save 60 10000 #在60秒(1分钟)之后,如果至少有10000个key发生变化,Redis就会自动触发BGSAVE命令创建快照。
根据配置,快照将被写入dbfilename选项指定的文件里面,并存储在dir选项指定的路径上面的damp.pdb文件中。如果在新的快照文件创建完毕之前,Redis、系统或者硬件这三者中的任意一个崩溃了,那么Redis将丢失最近一次创建快照写入的所有数据。
- BGSAVE命令: 客户端向Redis发送 BGSAVE命令 来创建一个快照。对于支持BGSAVE命令的平台来说(基本上所有平台支持,除了Windows平台),Redis会调用fork来创建一个子进程,然后子进程负责将快照写入硬盘,而父进程则继续处理命令请求。
- SAVE命令: 客户端还可以向Redis发送 SAVE命令 来创建一个快照,接到SAVE命令的Redis服务器在快照创建完毕之前不会再响应任何其他命令。SAVE命令不常用,我们通常只会在没有足够内存去执行BGSAVE命令的情况下,又或者即使等待持久化操作执行完毕也无所谓的情况下,才会使用这个命令。
- save选项: 如果用户设置了save选项(一般会默认设置),比如 save 60 10000,那么从Redis最近一次创建快照之后开始算起,当“60秒之内有10000次写入”这个条件被满足时,Redis就会自动触发BGSAVE命令。
- SHUTDOWN命令: 当Redis通过SHUTDOWN命令接收到关闭服务器的请求时,或者接收到标准TERM信号时,会执行一个SAVE命令,阻塞所有客户端,不再执行客户端发送的任何命令,并在SAVE命令执行完毕之后关闭服务器。
- 一个Redis服务器连接到另一个Redis服务器: 当一个Redis服务器连接到另一个Redis服务器,并向对方发送SYNC命令来开始一次复制操作的时候,如果主服务器目前没有执行BGSAVE操作,或者主服务器并非刚刚执行完BGSAVE操作,那么主服务器就会执行BGSAVE命令
AOF:
与快照持久化相比,AOF持久化 的实时性更好,虽然占用内存空间太大并且加载命令比加载数据要慢,但已成为主流的持久化方案。默认情况下Redis没有开启AOF(append only file)方式的持久化,可以通过appendonly yes开启。开启AOF持久化后每执行一条会更改Redis中的数据的命令,Redis就会将该命令写入硬盘中的AOF文件。AOF文件的保存位置和RDB文件的位置相同,都是通过dir参数设置的,默认的文件名是appendonly.aof。
appendfsync always #每次有数据修改发生时都会写入AOF文件,这样会严重降低Redis的速度
appendfsync everysec #每秒钟同步一次,显示地将多个写命令同步到硬盘
appendfsync no #让操作系统决定何时进行同步
appendfsync always 可以实现将数据丢失减到最少,不过这种方式需要对硬盘进行大量的写入而且每次只写入一个命令,十分影响Redis的速度。另外使用固态硬盘的用户谨慎使用appendfsync always选项,因为这会明显降低固态硬盘的使用寿命。
为了兼顾数据和写入性能,用户可以考虑 appendfsync everysec选项 ,让Redis每秒同步一次AOF文件,Redis性能几乎没受到任何影响。而且这样即使出现系统崩溃,用户最多只会丢失一秒之内产生的数据。当硬盘忙于执行写入操作的时候,Redis还会优雅的放慢自己的速度以便适应硬盘的最大写入速度。
appendfsync no 选项一般不推荐,这种方案会使Redis丢失不定量的数据而且如果用户的硬盘处理写入操作的速度不够的话,那么当缓冲区被等待写入的数据填满时,Redis的写入操作将被阻塞,这会导致Redis的请求速度变慢。
为了解决AOF体积过大的问题,用户可以向Redis发送 BGREWRITEAOF命令 ,这个命令会通过移除AOF文件中的冗余命令来重写(rewrite)AOF文件来减小AOF文件的体积。BGREWRITEAOF命令和BGSAVE创建快照原理十分相似,所以AOF文件重写也需要用到子进程,这样会导致性能问题和内存占用问题,和快照持久化一样。更糟糕的是,如果不加以控制的话,AOF文件的体积可能会比快照文件大好几倍。
和快照持久化可以通过设置save选项来自动执行BGSAVE一样,AOF持久化也可以通过设置
auto-aof-rewrite-percentage
选项和
auto-aof-rewrite-min-size
选项自动执行BGREWRITEAOF命令。举例:假设用户对Redis设置了如下配置选项并且启用了AOF持久化。那么当AOF文件体积大于64mb,并且AOF的体积比上一次重写之后的体积大了至少一倍(100%)的时候,Redis将执行BGREWRITEAOF命令。
Redis 4.0 开始支持 RDB 和 AOF 的混合持久化:如果把混合持久化打开,AOF 重写的时候就直接把 RDB 的内容写到 AOF 文件开头。这样做的好处是可以结合 RDB 和 AOF 的优点, 快速加载同时避免丢失过多的数据。当然缺点也是有的, AOF 里面的 RDB 部分就是压缩格式不再是 AOF 格式,可读性较差。
主从复制,是指将一台Redis服务器的数据,复制到其他的Redis服务器。前者称为主节点(master),后者称为从节点(slave);数据的复制是单向的,只能由主节点到从节点。
默认情况下,每台Redis服务器都是主节点;且一个主节点可以有多个从节点(或没有从节点),但一个从节点只能有一个主节点。
主从复制的作用
主从复制的作用主要包括:
- 数据冗余:主从复制实现了数据的热备份,是持久化之外的一种数据冗余方式。
- 故障恢复:当主节点出现问题时,可以由从节点提供服务,实现快速的故障恢复;实际上是一种服务的冗余。
- 负载均衡:在主从复制的基础上,配合读写分离,可以由主节点提供写服务,由从节点提供读服务(即写Redis数据时应用连接主节点,读Redis数据时应用连接从节点),分担服务器负载;尤其是在写少读多的场景下,通过多个从节点分担读负载,可以大大提高Redis服务器的并发量。
- 高可用基石:除了上述作用以外,主从复制还是哨兵和集群能够实施的基础,因此说主从复制是Redis高可用的基础
主从复制的开启,完全是在从节点发起的;不需要我们在主节点做任何事情。从节点开启主从复制,有3种方式:
(1)配置文件
在从服务器的配置文件中加入:slaveof
(2)启动命令
redis-server启动命令后加入 --slaveof
(3)客户端命令
Redis服务器启动后,直接通过客户端执行命令:slaveof ,则该Redis实例成为从节点。
通过slaveof 命令建立主从复制关系以后,可以通过slaveof no one断开。需要注意的是,从节点断开复制后,不会删除已有的数据,只是不再接受主节点新的数据变化。
主从复制过程大体可以分为3个阶段:连接建立阶段(即准备阶段)、数据同步阶段、命令传播阶段;下面分别进行介绍。
连接建立阶段
该阶段的主要作用是在主从节点之间建立连接,为数据同步做好准备。从节点服务器内部维护了两个字段,即masterhost和masterport字段,用于存储主节点的ip和port信息。需要注意的是,**slaveof ** 是异步命令,从节点完成主节点ip 和port 的保存后,向发送slaveof 命令的客户端直接返回OK **,实际的复制操作在这之后才开始进行。**从节点每秒1次调用复制定时函数replicationCron(),如果发现了有主节点可以连接,便会根据主节点的ip和port,创建socket连接。如果连接成功,则:
从节点:为该socket建立一个专门处理复制工作的文件事件处理器,负责后续的复制工作,如接收RDB文件、接收命令传播等。
主节点:接收到从节点的socket连接后(即accept之后),为该socket创建相应的客户端状态,并将从节点看做是连接到主节点的一个客户端,后面的步骤会以从节点向主节点发送命令请求的形式来进行。
从节点成为主节点的客户端之后,发送ping命令进行首次请求,目的是:检查socket连接是否可用,以及主节点当前是否能够处理请求。
从节点发送ping命令后,可能出现3种情况:
(1)返回pong:说明socket连接正常,且主节点当前可以处理请求,复制过程继续。
(2)超时:一定时间后从节点仍未收到主节点的回复,说明socket连接不可用,则从节点断开socket连接,并重连。
(3)返回pong以外的结果:如果主节点返回其他结果,如正在处理超时运行的脚本,说明主节点当前无法处理命令,则从节点断开socket连接,并重连。
如果从节点中设置了masterauth选项,则从节点需要向主节点进行身份验证;没有设置该选项,则不需要验证。从节点进行身份验证是通过向主节点发送auth命令进行的,auth命令的参数即为配置文件中的masterauth的值。身份验证之后,从节点会向主节点发送其监听的端口号(前述例子中为6380),主节点将该信息保存到该从节点对应的客户端的slave_listening_port字段中;该端口信息除了在主节点中执行info Replication时显示以外,没有其他作用。
主从节点之间的连接建立以后,便可以开始进行数据同步,该阶段可以理解为从节点数据的初始化。具体执行的方式是:从节点向主节点发送psync命令(Redis2.8以前是sync命令),开始同步。数据同步阶段是主从复制最核心的阶段,根据主从节点当前状态的不同,可以分为全量复制和部分复制。在数据同步阶段之前,从节点是主节点的客户端,主节点不是从节点的客户端;而到了这一阶段及以后,主从节点互为客户端。原因在于:在此之前,主节点只需要响应从节点的请求即可,不需要主动发请求,而在数据同步阶段和后面的命令传播阶段,主节点需要主动向从节点发送请求(如推送缓冲区中的写命令),才能完成复制。
数据同步阶段完成后,主从节点进入命令传播阶段;在这个阶段主节点将自己执行的写命令发送给从节点,从节点接收命令并执行,从而保证主从节点数据的一致性。在命令传播阶段,除了发送写命令,主从节点还维持着心跳机制:PING和REPLCONF ACK。
- 全量复制:用于初次复制或其他无法进行部分复制的情况,将主节点中的所有数据都发送给从节点,是一个非常重型的操作。
(1)从节点判断无法进行部分复制,向主节点发送全量复制的请求;或从节点发送部分复制的请求,但主节点判断无法进行全量复制;具体判断过程需要在讲述了部分复制原理后再介绍。
(2)主节点收到全量复制的命令后,执行bgsave,命令fork子进程进行RDB持久化,在后台生成RDB文件,并使用一个缓冲区(称为复制缓冲区)记录从现在开始执行的所有写命令
(3)主节点的bgsave执行完成后,将RDB文件发送给从节点;从节点首先清除自己的旧数据,然后载入接收的RDB文件,将数据库状态更新至主节点执行bgsave时的数据库状态
(4)主节点将前述复制缓冲区中的所有写命令发送给从节点,从节点执行这些写命令,将数据库状态更新至主节点的最新状态
(5)如果从节点开启了AOF,则会触发bgrewriteaof的执行,从而保证AOF文件更新至主节点的最新状态
- 部分复制:用于网络中断等情况后的复制,只将中断期间主节点执行的写命令发送给从节点,与全量复制相比更加高效。需要注意的是,如果网络中断时间过长,导致主节点没有能够完整地保存中断期间执行的写命令,则无法进行部分复制,仍使用全量复制。
- 主节点和从节点分别维护一个复制偏移量(offset),代表的是主节点向从节点传递的字节数;主节点每次向从节点传播N个字节数据时,主节点的offset增加N;从节点每次收到主节点传来的N个字节数据时,从节点的offset增加N。offset用于判断主从节点的数据库状态是否一致:如果二者offset相同,则一致;如果offset不同,则不一致,此时可以根据两个offset找出从节点缺少的那部分数据。
- 复制积压缓冲区是由主节点维护的、固定长度的、先进先出(FIFO)队列,默认大小1MB;当主节点开始有从节点时创建,其作用是备份主节点最近发送给从节点的数据。注意,无论主节点有一个还是多个从节点,都只需要一个复制积压缓冲区。在命令传播阶段,主节点除了将写命令发送给从节点,还会发送一份给复制积压缓冲区,作为写命令的备份;除了存储写命令,复制积压缓冲区中还存储了其中的每个字节对应的复制偏移量(offset)。由于复制积压缓冲区定长且是先进先出,所以它保存的是主节点最近执行的写命令;时间较早的写命令会被挤出缓冲区。每个Redis节点(无论主从),在启动时都会自动生成一个随机ID(每次启动都不一样),由40个随机的十六进制字符组成;runid用来唯一识别一个Redis节点。通过info Server命令,可以查看节点的runid。
- 主从节点初次复制时,主节点将自己的runid发送给从节点,从节点将这个runid保存起来;当断线重连时,从节点会将这个runid发送给主节点;主节点根据runid判断能否进行部分复制:
- 如果从节点保存的runid与主节点现在的runid相同,说明主从节点之前同步过,主节点会继续尝试使用部分复制(到底能不能部分复制还要看offset和复制积压缓冲区的情况);
- 如果从节点保存的runid与主节点现在的runid不同,说明从节点在断线前同步的Redis节点并不是当前的主节点,只能进行全量复制。
**心跳机制:**在命令传播阶段,**从节点会向主节点发送****REPLCONF ACK命令,**频率是每秒1次,用于检测主从节点网络状态;检测命令丢失,对比offerset;每隔指定的时间,主节点会向从节点发送PING命令,这个PING命令的作用,主要是为了让从节点进行超时判断。
**哨兵的核心功能是主节点的自动故障转移。**下面是Redis官方文档对于哨兵功能的描述:
- 监控(Monitoring):哨兵会不断地检查主节点和从节点是否运作正常。
- 自动故障转移(Automatic failover):当主节点不能正常工作时,哨兵会开始自动故障转移操作,它会将失效主节点的其中一个从节点升级为新的主节点,并让其他从节点改为复制新的主节点。
- 配置提供者(Configuration provider):客户端在初始化时,通过连接哨兵来获得当前Redis服务的主节点地址。
- 通知(Notification):哨兵可以将故障转移的结果发送给客户端。
其中,监控和自动故障转移功能,使得哨兵可以及时发现主节点故障并完成转移;而配置提供者和通知功能,则需要在与客户端的交互中才能体现。它由两部分组成,哨兵节点和数据节点:
- 哨兵节点:哨兵系统由一个或多个哨兵节点组成,哨兵节点是特殊的redis节点,不存储数据。
- 数据节点:主节点和从节点都是数据节点。
(1)哨兵节点本质上是redis节点,哨兵系统中的主从节点,与普通的主从节点并没有什么区别,故障发现和转移是由哨兵来控制和完成的。配置监控主节点后会自动获取其他节点和哨兵的信息,通过投票决定主节点是否失效,是否更换为其他节点,在哨兵节点启动和故障转移阶段,各个节点的配置文件会被重写(config rewrite),原主节点如果上线会变为从节点。
(4)在哨兵节点启动和故障转移阶段,各个节点的配置文件会被重写(config rewrite)。
原理:
(1)定时任务:每个哨兵节点维护了3个定时任务。定时任务的功能分别如下:通过向主从节点发送info命令获取最新的主从结构;通过发布订阅功能获取其他哨兵节点的信息;通过向其他节点发送ping命令进行心跳检测,判断是否下线。
(2)主观下线:在心跳检测的定时任务中,如果其他节点超过一定时间没有回复,哨兵节点就会将其进行主观下线。顾名思义,主观下线的意思是一个哨兵节点“主观地”判断下线;与主观下线相对应的是客观下线。
(3)客观下线:哨兵节点在对主节点进行主观下线后,会通过sentinel is-master-down-by-addr命令询问其他哨兵节点该主节点的状态;如果判断主节点下线的哨兵数量达到一定数值,则对该主节点进行客观下线。需要特别注意的是,客观下线是主节点才有的概念;如果从节点和哨兵节点发生故障,被哨兵主观下线后,不会再有后续的客观下线和故障转移操作。
(4)选举领导者哨兵节点:当主节点被判断客观下线以后,各个哨兵节点会进行协商,选举出一个领导者哨兵节点,并由该领导者节点对其进行故障转移操作。
监视该主节点的所有哨兵都有可能被选为领导者,选举使用的算法是Raft算法;Raft算法的基本思路是先到先得:即在一轮选举中,哨兵A向B发送成为领导者的申请,如果B没有同意过其他哨兵,则会同意A成为领导者。选举的具体过程这里不做详细描述,一般来说,哨兵选择的过程很快,谁先完成客观下线,一般就能成为领导者。
(5)故障转移:选举出的领导者哨兵,开始进行故障转移操作,该操作大体可以分为3个步骤:
- 在从节点中选择新的主节点:选择的原则是,首先过滤掉不健康的从节点;然后选择优先级最高的从节点(由slave-priority指定);如果优先级无法区分,则选择复制偏移量最大的从节点;如果仍无法区分,则选择runid最小的从节点。
- 更新主从状态:通过slaveof no one命令,让选出来的从节点成为主节点;并通过slaveof命令让其他节点成为其从节点。
- 将已经下线的主节点(即6379)设置为新的主节点的从节点,当6379重新上线后,它会成为新的主节点的从节点。
配置思路:
(1)哨兵节点的数量应不止一个,一方面增加哨兵节点的冗余,避免哨兵本身成为高可用的瓶颈;另一方面减少对下线的误判。此外,这些不同的哨兵节点应部署在不同的物理机上。
(2)哨兵节点的数量应该是奇数,便于哨兵通过投票做出“决策”:领导者选举的决策、客观下线的决策等。
(3)各个哨兵节点的配置应一致,包括硬件、参数等;此外,所有节点都应该使用ntp或类似服务,保证时间准确、一致。
(4)哨兵的配置提供者和通知客户端功能,需要客户端的支持才能实现,如Jedis;如果开发者使用的库未提供相应支持,则可能需要开发者自己实现。
(5)当哨兵系统中的节点在docker(或其他可能进行端口映射的软件)中部署时,应特别注意端口映射可能会导致哨兵系统无法正常工作,因为哨兵的工作基于与其他节点的通信,而docker的端口映射可能导致哨兵无法连接到其他节点。例如,哨兵之间互相发现,依赖于它们对外宣称的IP和port,如果某个哨兵A部署在做了端口映射的docker中,那么其他哨兵使用A宣称的port无法连接到A。
集群中的每一个 Redis 节点都 互相两两相连,客户端任意 直连 到集群中的 任意一台,就可以对其他 Redis 节点进行 读写 的操作。
edis 集群中内置了 16384
个哈希槽。当客户端连接到 Redis 集群之后,会同时得到一份关于这个 集群的配置信息,当客户端具体对某一个 key
值进行操作时,会计算出它的一个 Hash 值,然后把结果对 16384
求余数,这样每个 key
都会对应一个编号在 0-16383
之间的哈希槽,Redis 会根据节点数量 大致均等 的将哈希槽映射到不同的节点。
再结合集群的配置信息就能够知道这个 key
值应该存储在哪一个具体的 Redis 节点中,如果不属于自己管,那么就会使用一个特殊的 MOVED
命令来进行一个跳转,告诉客户端去连接这个节点以获取数据:
GET x
-MOVED 3999 127.0.0.1:6381
MOVED
指令第一个参数 3999
是 key
对应的槽位编号,后面是目标节点地址,MOVED
命令前面有一个减号,表示这是一个错误的消息。客户端在收到 MOVED
指令后,就立即纠正本地的 槽位映射表,那么下一次再访问 key
时就能够到正确的地方去获取了。
集群的主要作用
- 数据分区: 数据分区 (或称数据分片) 是集群最核心的功能。集群将数据分散到多个节点,一方面 突破了 Redis 单机内存大小的限制,存储容量大大增加;另一方面 每个主节点都可以对外提供读服务和写服务,大大提高了集群的响应能力。Redis 单机内存大小受限问题,在介绍持久化和主从复制时都有提及,例如,如果单机内存太大,
bgsave
和bgrewriteaof
的fork
操作可能导致主进程阻塞,主从环境下主机切换时可能导致从节点长时间无法提供服务,全量复制阶段主节点的复制缓冲区可能溢出…… - 高可用: 集群支持主从复制和主节点的 自动故障转移 (与哨兵类似),当任一节点发生故障时,集群仍然可以对外提供服务。
第一步:创建集群节点配置文件
首先我们找一个地方创建一个名为 redis-cluster
的目录:
mkdir -p ~/Desktop/redis-cluster
然后按照上面的方法,创建六个配置文件,分别命名为:redis_7000.conf
/redis_7001.conf
.....redis_7005.conf
,然后根据不同的端口号修改对应的端口值就好了:
# 后台执行
daemonize yes
# 端口号
port 7000
# 为每一个集群节点指定一个 pid_file
pidfile ~/Desktop/redis-cluster/redis_7000.pid
# 启动集群模式
cluster-enabled yes
# 每一个集群节点都有一个配置文件,这个文件是不能手动编辑的。确保每一个集群节点的配置文件不通
cluster-config-file nodes-7000.conf
# 集群节点的超时时间,单位:ms,超时后集群会认为该节点失败
cluster-node-timeout 5000
# 最后将 appendonly 改成 yes(AOF 持久化)
appendonly yes
记得把对应上述配置文件中根端口对应的配置都修改掉 (port/ pidfile/ cluster-config-file)。
第二步:分别启动 6 个 Redis 实例
redis-server ~/Desktop/redis-cluster/redis_7000.conf
redis-server ~/Desktop/redis-cluster/redis_7001.conf
redis-server ~/Desktop/redis-cluster/redis_7002.conf
redis-server ~/Desktop/redis-cluster/redis_7003.conf
redis-server ~/Desktop/redis-cluster/redis_7004.conf
redis-server ~/Desktop/redis-cluster/redis_7005.conf
第三步:建立集群
执行下列命令:
redis-cli --cluster create --cluster-replicas 1 127.0.0.1:7000 127.0.0.1:7001 127.0.0.1:7002 127.0.0.1:7003 127.0.0.1:7004 127.0.0.1:7005
- 这里稍微解释一下这个
--replicas 1
的意思是:我们希望为集群中的每个主节点创建一个从节点。
在 哨兵系统 中,节点分为 数据节点 和 哨兵节点:前者存储数据,后者实现额外的控制功能。在 集群 中,没有数据节点与非数据节点之分:所有的节点都存储数据,也都参与集群状态的维护。为此,集群中的每个节点,都提供了两个 TCP 端口:
- 普通端口: 即我们在前面指定的端口 (7000等)。普通端口主要用于为客户端提供服务 (与单机节点类似);但在节点间数据迁移时也会使用。
- 集群端口: 端口号是普通端口 + 10000 (10000是固定值,无法改变),如
7000
节点的集群端口为17000
。集群端口只用于节点之间的通信,如搭建集群、增减节点、故障转移等操作时节点间的通信;不要使用客户端连接集群接口。为了保证集群可以正常工作,在配置防火墙时,要同时开启普通端口和集群端口。
Gossip 协议
节点间通信,按照通信协议可以分为几种类型:单对单、广播、Gossip 协议等。重点是广播和 Gossip 的对比。
- 广播是指向集群内所有节点发送消息。优点 是集群的收敛速度快(集群收敛是指集群内所有节点获得的集群信息是一致的),缺点 是每条消息都要发送给所有节点,CPU、带宽等消耗较大。
- Gossip 协议的特点是:在节点数量有限的网络中,每个节点都 “随机” 的与部分节点通信 (并不是真正的随机,而是根据特定的规则选择通信的节点),经过一番杂乱无章的通信,每个节点的状态很快会达到一致。Gossip 协议的 优点 有负载 (比广播) 低、去中心化、容错性高 (因为通信有冗余) 等;缺点 主要是集群的收敛速度慢。
消息类型
集群中的节点采用 固定频率(每秒10次) 的 定时任务 进行通信相关的工作:判断是否需要发送消息及消息类型、确定接收节点、发送消息等。如果集群状态发生了变化,如增减节点、槽状态变更,通过节点间的通信,所有节点会很快得知整个集群的状态,使集群收敛。
节点间发送的消息主要分为 5
种:meet 消息
、ping 消息
、pong 消息
、fail 消息
、publish 消息
。不同的消息类型,通信协议、发送的频率和时机、接收节点的选择等是不同的:
- MEET 消息: 在节点握手阶段,当节点收到客户端的
CLUSTER MEET
命令时,会向新加入的节点发送MEET
消息,请求新节点加入到当前集群;新节点收到 MEET 消息后会回复一个PONG
消息。 - PING 消息: 集群里每个节点每秒钟会选择部分节点发送
PING
消息,接收者收到消息后会回复一个PONG
消息。PING 消息的内容是自身节点和部分其他节点的状态信息,作用是彼此交换信息,以及检测节点是否在线。PING
消息使用 Gossip 协议发送,接收节点的选择兼顾了收敛速度和带宽成本,具体规则如下:(1)随机找 5 个节点,在其中选择最久没有通信的 1 个节点;(2)扫描节点列表,选择最近一次收到PONG
消息时间大于cluster_node_timeout / 2
的所有节点,防止这些节点长时间未更新。 - PONG消息:
PONG
消息封装了自身状态数据。可以分为两种:第一种 是在接到MEET/PING
消息后回复的PONG
消息;第二种 是指节点向集群广播PONG
消息,这样其他节点可以获知该节点的最新信息,例如故障恢复后新的主节点会广播PONG
消息。 - FAIL 消息: 当一个主节点判断另一个主节点进入
FAIL
状态时,会向集群广播这一FAIL
消息;接收节点会将这一FAIL
消息保存起来,便于后续的判断。 - PUBLISH 消息: 节点收到
PUBLISH
命令后,会先执行该命令,然后向集群广播这一消息,接收节点也会执行该PUBLISH
命令。
一般情况下,我们使用分布式锁主要有两个场景:
- 避免不同节点重复相同的工作:比如用户执行了某个操作有可能不同节点会发送多封邮件;
- 避免破坏数据的正确性:如果两个节点在同一条数据上同时进行操作,可能会造成数据错误或不一致的情况出现;
分布式锁一般有如下的特点:
- 互斥性: 同一时刻只能有一个线程持有锁
- 可重入性: 同一节点上的同一个线程如果获取了锁之后能够再次获取锁
- 锁超时:和J.U.C中的锁一样支持锁超时,防止死锁
- 高性能和高可用: 加锁和解锁需要高效,同时也需要保证高可用,防止分布式锁失效
- 具备阻塞和非阻塞性:能够及时从阻塞状态中被唤醒
Redis的SETNX命令,setnx key value,将key设置为value,当键不存在时,才能成功,若键存在,什么也不做,成功返回1,失败返回0 。 SETNX实际上就是SET IF NOT Exists的缩写,因为分布式锁还需要超时机制,所以我们利用expire命令来设置,所以利用setnx+expire命令的核心代码如下:
public boolean tryLock(String key,String requset,int timeout) {
Long result = jedis.setnx(key, requset);
// result = 1时,设置成功,否则设置失败
if (result == 1L) {
return jedis.expire(key, timeout) == 1L;
} else {
return false;
}
}
setnx和expire是分开的两步操作,不具有原子性,如果执行完第一条指令应用异常或者重启了,锁将无法过期。一种改善方案就是使用Lua脚本来保证原子性(包含setnx和expire两条指令:
public boolean tryLock_with_lua(String key, String UniqueId, int seconds) {
String lua_scripts = "if redis.call('setnx',KEYS[1],ARGV[1]) == 1 then" +
"redis.call('expire',KEYS[1],ARGV[2]) return 1 else return 0 end";
List<String> keys = new ArrayList<>();
List<String> values = new ArrayList<>();
keys.add(key);
values.add(UniqueId);
values.add(String.valueOf(seconds));
Object result = jedis.eval(lua_scripts, keys, values);
//判断是否成功
return result.equals(1L);
}
SET key value[EX seconds][PX milliseconds][NX|XX]
- EX seconds: 设定过期时间,单位为秒
- PX milliseconds: 设定过期时间,单位为毫秒
- NX: 仅当key不存在时设置值
- XX: 仅当key存在时设置值
set命令的nx选项,就等同于setnx命令,代码过程如下:
public boolean tryLock_with_set(String key, String UniqueId, int seconds) {
return "OK".equals(jedis.set(key, UniqueId, "NX", "EX", seconds));
}
value必须要具有唯一性,我们可以用UUID来做,设置随机字符串保证唯一性,至于为什么要保证唯一性?假如value不是随机字符串,而是一个固定值,那么就可能存在下面的问题:
- 1.客户端1获取锁成功
- 2.客户端1在某个操作上阻塞了太长时间
- 3.设置的key过期了,锁自动释放了
- 4.客户端2获取到了对应同一个资源的锁
- 5.客户端1从阻塞中恢复过来,因为value值一样,所以执行释放锁操作时就会释放掉客户端2持有的锁,这样就会造成问题
所以通常来说,在释放锁时,我们需要对value进行验证;
释放锁时需要验证value值,也就是说我们在获取锁的时候需要设置一个value,不能直接用del key这种粗暴的方式,因为直接del key任何客户端都可以进行解锁了,所以解锁时,我们需要判断锁是否是自己的,基于value值来判断,代码如下:
public boolean releaseLock_with_lua(String key,String value) {
String luaScript = "if redis.call('get',KEYS[1]) == ARGV[1] then " +
"return redis.call('del',KEYS[1]) else return 0 end";
return jedis.eval(luaScript, Collections.singletonList(key), Collections.singletonList(value)).equals(1L);
}
这里使用Lua脚本的方式,尽量保证原子性。
使用 set key value [EX seconds][PX milliseconds][NX|XX]
命令 看上去很OK,实际上在Redis集群的时候也会出现问题,比如说A客户端在Redis的master节点上拿到了锁,但是这个加锁的key还没有同步到slave节点,master故障,发生故障转移,一个slave节点升级为master节点,B客户端也可以获取同个key的锁,但客户端A也已经拿到锁了,这就导致多个客户端都拿到锁。
Redis作者 antirez基于分布式环境下提出了一种更高级的分布式锁的实现Redlock:
假设有5个独立的Redis节点(注意这里的节点可以是5个Redis单master实例,也可以是5个Redis Cluster集群,但并不是有5个主节点的cluster集群):
- 获取当前Unix时间,以毫秒为单位
- 依次尝试从5个实例,使用相同的key和具有唯一性的value(例如UUID)获取锁,当向Redis请求获取锁时,客户端应该设置一个网络连接和响应超时时间,这个超时时间应用小于锁的失效时间,例如你的锁自动失效时间为10s,则超时时间应该在5~50毫秒之间,这样可以避免服务器端Redis已经挂掉的情况下,客户端还在死死地等待响应结果。如果服务端没有在规定时间内响应,客户端应该尽快尝试去另外一个Redis实例请求获取锁
- 客户端使用当前时间减去开始获取锁时间(步骤1记录的时间)就得到获取锁使用的时间,当且仅当从大多数(N/2+1,这里是3个节点)的Redis节点都取到锁,并且使用的时间小于锁失败时间时,锁才算获取成功。
- 如果取到了锁,key的真正有效时间等于有效时间减去获取锁所使用的时间(步骤3计算的结果)
- 如果某些原因,获取锁失败(没有在至少N/2+1个Redis实例取到锁或者取锁时间已经超过了有效时间),客户端应该在所有的Redis实例上进行解锁(即便某些Redis实例根本就没有加锁成功,防止某些节点获取到锁但是客户端没有得到响应而导致接下来的一段时间不能被重新获取锁)
对于Java用户而言,我们经常使用Jedis,Jedis是Redis的Java客户端,除了Jedis之外,Redisson也是Java的客户端,Jedis是阻塞式I/O,而Redisson底层使用Netty可以实现非阻塞I/O,该客户端封装了锁的,继承了J.U.C的Lock接口,所以我们可以像使用ReentrantLock一样使用Redisson,具体使用过程如下。
- 首先加入POM依赖
<dependency>
<groupId>org.redisson</groupId>
<artifactId>redisson</artifactId>
<version>3.10.6</version>
</dependency>
复制代码
- 使用Redisson,代码如下(与使用ReentrantLock类似)
// 1. 配置文件
Config config = new Config();
config.useSingleServer()
.setAddress("redis://127.0.0.1:6379")
.setPassword(RedisConfig.PASSWORD)
.setDatabase(0);
//2. 构造RedissonClient
RedissonClient redissonClient = Redisson.create(config);
//3. 设置锁定资源名称
RLock lock = redissonClient.getLock("redlock");
lock.lock();
try {
System.out.println("获取锁成功,实现业务逻辑");
Thread.sleep(10000);
} catch (InterruptedException e) {
e.printStackTrace();
} finally {
lock.unlock();
}
HyperLogLog用于近似估算基数统计(Cardinality Counting) ,基数统计通常是用来统计一个集合中不重复的元素个数。
这张图的意思是,我们给定一系列的随机整数,记录下低位连续零位的最大长度 K,即为图中的 maxbit
,通过这个 K 值我们就可以估算出随机数的数量 N(所求基数)。并且N 约等于 2k。用调和平均数计算更精确的值,也就是倒数的平均值,它能有效地平滑离群值的影响:
avg = (3 + 4 + 5 + 104) / 4 = 29
avg = 4 / (1/3 + 1/4 + 1/5 + 1/104) = 5.044
布隆过滤器(Bloom Filter) 是 1970 年由布隆提出的。它 实际上 是一个很长的二进制向量和一系列随机映射函数 (下面详细说),实际上你也可以把它 简单理解 为一个不怎么精确的 set 结构,当你使用它的 contains
方法判断某个对象是否存在时,它可能会误判。但是布隆过滤器也不是特别不精确,只要参数设置的合理,它的精确度可以控制的相对足够精确,只会有小小的误判概率。当布隆过滤器说某个值存在时,这个值 可能不存在;当它说不存在时,那么 一定不存在。
基于上述的功能,我们大致可以把布隆过滤器用于以下的场景之中:
- 大数据判断是否存在:这就可以实现出上述的去重功能,如果你的服务器内存足够大的话,那么使用 HashMap 可能是一个不错的解决方案,理论上时间复杂度可以达到 O(1)的级别,但是当数据量起来之后,还是只能考虑布隆过滤器。
- 解决缓存穿透:我们经常会把一些热点数据放在 Redis 中当作缓存,例如产品详情。 通常一个请求过来之后我们会先查询缓存,而不用直接读取数据库,这是提升性能最简单也是最普遍的做法,但是 如果一直请求一个不存在的缓存,那么此时一定不存在缓存,那就会有 大量请求直接打到数据库 上,造成 缓存穿透,布隆过滤器也可以用来解决此类问题。
- 爬虫/ 邮箱等系统的过滤:平时不知道你有没有注意到有一些正常的邮件也会被放进垃圾邮件目录中,这就是使用布隆过滤器 误判 导致的。
布隆过滤器 本质上 是由长度为 m
的位向量或位列表(仅包含 0
或 1
位值的列表)组成,最初所有的值均设置为 0
,所以我们先来创建一个稍微长一些的位向量用作展示:
当我们向布隆过滤器中添加数据时,会使用 多个 hash
函数对 key
进行运算,算得一个证书索引值,然后对位数组长度进行取模运算得到一个位置,每个 hash
函数都会算得一个不同的位置。再把位数组的这几个位置都置为 1
就完成了 add
操作。向布隆过滤器查查询 key
是否存在时,跟 add
操作一样,会把这个 key
通过相同的多个 hash
函数进行运算,查看 对应的位置 是否 都 为 1
,只要有一个位为 0
,那么说明布隆过滤器中这个 key
不存在。如果这几个位置都是 1
,并不能说明这个 key
一定存在,只能说极有可能存在,因为这些位置的 1
可能是因为其他的 key
存在导致的。使用时 不要让实际元素数量远大于初始化数量;当实际元素数量超过初始化数量时,应该对布隆过滤器进行 重建,重新分配一个 size
更大的过滤器,再将所有的历史元素批量 add
进行;
为了支持消息多播,消息队列(生产者发布消息,消费者接收消息),Redis 不能再依赖于那 5 种基础的数据结构了,它单独使用了一个模块来支持消息多播,这个模块就是 PubSub,也就是 PublisherSubscriber:
基于 list
结构的消息队列,是一种 Publisher
与 Consumer
点对点的强关联关系,Redis 为了消除这样的强关联,引入了另一种概念:频道 (channel):
当 Publisher
往 channel
中发布消息时,关注了指定 channel
的 Consumer
就能够同时受到消息。但这里的 问题 是,消费者订阅一个频道是必须 明确指定频道名称 的,这意味着,如果我们想要 订阅多个 频道,那么就必须 显式地关注多个 名称。为了简化订阅的繁琐操作,Redis 提供了 模式订阅 的功能 Pattern Subscribe,这样就可以 一次性关注多个频道 了,即使生产者新增了同模式的频道,消费者也可以立即受到消息
# 订阅频道:
SUBSCRIBE channel [channel ....] # 订阅给定的一个或多个频道的信息
PSUBSCRIBE pattern [pattern ....] # 订阅一个或多个符合给定模式的频道
# 发布频道:
PUBLISH channel message # 将消息发送到指定的频道
# 退订频道:
UNSUBSCRIBE [channel [channel ....]] # 退订指定的频道
PUNSUBSCRIBE [pattern [pattern ....]] #退订所有给定模式的频道
实现原理:
每个 Redis 服务器进程维持着一个标识服务器状态 的 redis.h/redisServer
结构,其中就 保存着有订阅的频道 以及 订阅模式 的信息:
struct redisServer {
// ...
dict *pubsub_channels; // 订阅频道
list *pubsub_patterns; // 订阅模式
// ...
};
当客户端订阅某一个频道之后,Redis 就会往 pubsub_channels
这个字典中新添加一条数据,实际上这个 dict
字典维护的是一张链表,链表中存放着client。
def SUBSCRIBE(client, channels):
# 遍历所有输入频道
for channel in channels:
# 将客户端添加到链表的末尾
redisServer.pubsub_channels[channel].append(client)
通过 pubsub_channels
字典,程序只要检查某个频道是否为字典的键,就可以知道该频道是否正在被客户端订阅;只要取出某个键的值,就可以得到所有订阅该频道的客户端的信息。了解 SUBSCRIBE
,那么 PUBLISH
命令的实现也变得十分简单了,只需要通过上述字典定位到具体的客户端,再把消息发送给它们就好了:(伪代码实现如下)
def PUBLISH(channel, message):
# 遍历所有订阅频道 channel 的客户端
for client in server.pubsub_channels[channel]:
# 将信息发送给它们
send_message(client, message)
上面给出的伪代码并没有 完整描述 PUBLISH
命令的行为,因为 PUBLISH
除了将 message
发送到 所有订阅 channel
的客户端 之外,它还会将 channel
和 pubsub_patterns
中的 模式 进行对比,如果 channel
和某个模式匹配的话,那么也将 message
发送到 订阅那个模式的客户端。
当发送一条消息到 wmyskxz.chat
这个频道时,Redis 不仅仅会发送到当前的频道,还会发送到匹配于当前模式的所有频道,实际上,pubsub_patterns
背后还维护了一个 redis.h/pubsubPattern
结构:
typedef struct pubsubPattern {
redisClient *client; // 订阅模式的客户端
robj *pattern; // 订阅的模式
} pubsubPattern;
每当调用 PSUBSCRIBE
命令订阅一个模式时,程序就创建一个包含客户端信息和被订阅模式的 pubsubPattern
结构,并将该结构添加到 redisServer.pubsub_patterns
链表中。通过遍历整个 pubsub_patterns
链表,程序可以检查所有正在被订阅的模式,以及订阅这些模式的客户端。
缺点:
- 没有 Ack 机制,也不保证数据的连续: PubSub 的生产者传递过来一个消息,Redis 会直接找到相应的消费者传递过去。如果没有一个消费者,那么消息会被直接丢弃。如果开始有三个消费者,其中一个突然挂掉了,过了一会儿等它再重连时,那么重连期间的消息对于这个消费者来说就彻底丢失了。
- 不持久化消息: 如果 Redis 停机重启,PubSub 的消息是不会持久化的,毕竟 Redis 宕机就相当于一个消费者都没有,所有的消息都会被直接丢弃。
持久化升级版Redis Stream 从概念上来说,就像是一个 仅追加内容 的 消息链表,把所有加入的消息都一个一个串起来,每个消息都有一个唯一的 ID 和内容,这很简单,让它复杂的是从 Kafka 借鉴的另一种概念:消费者组(Consumer Group) (思路一致,实现不同):
上图就展示了一个典型的 Stream 结构。每个 Stream 都有唯一的名称,它就是 Redis 的 key
,在我们首次使用 xadd
指令追加消息时自动创建。我们对图中的一些概念做一下解释:
- Consumer Group:消费者组,可以简单看成记录流状态的一种数据结构。消费者既可以选择使用
XREAD
命令进行 独立消费,也可以多个消费者同时加入一个消费者组进行 组内消费。同一个消费者组内的消费者共享所有的 Stream 信息,同一条消息只会有一个消费者消费到,这样就可以应用在分布式的应用场景中来保证消息的唯一性。 - last_delivered_id:用来表示消费者组消费在 Stream 上 消费位置 的游标信息。每个消费者组都有一个 Stream 内 唯一的名称,消费者组不会自动创建,需要使用
XGROUP CREATE
指令来显式创建,并且需要指定从哪一个消息 ID 开始消费,用来初始化last_delivered_id
这个变量。 - pending_ids:每个消费者内部都有的一个状态变量,用来表示 已经 被客户端 获取,但是 还没有 ack 的消息。记录的目的是为了 保证客户端至少消费了消息一次,而不会在网络传输的中途丢失而没有对消息进行处理。如果客户端没有 ack,那么这个变量里面的消息 ID 就会越来越多,一旦某个消息被 ack,它就会对应开始减少。这个变量也被 Redis 官方称为 PEL (Pending Entries List)。
消息 ID 如果是由 XADD
命令返回自动创建的话,那么它的格式会像这样:timestampInMillis-sequence
(毫秒时间戳-序列号),例如 1527846880585-5
,它表示当前的消息是在毫秒时间戳 1527846880585
时产生的,并且是该毫秒内产生的第 5 条消息。这些 ID 的格式看起来有一些奇怪,为什么要使用时间来当做 ID 的一部分呢? 一方面,我们要 满足 ID 自增 的属性,另一方面,也是为了 支持范围查找 的功能。由于 ID 和生成消息的时间有关,这样就使得在根据时间范围内查找时基本上是没有额外损耗的。当然消息 ID 也可以由客户端自定义,但是形式必须是 "整数-整数",而且后面加入的消息的 ID 必须要大于前面的消息 ID。
消息内容就是普通的键值对,形如 hash 结构的键值对。
增删改查命令很简单,详情如下:
xadd
:追加消息xdel
:删除消息,这里的删除仅仅是设置了标志位,不影响消息总长度xrange
:获取消息列表,会自动过滤已经删除的消息xlen
:消息长度del
:删除Stream
我们可以在不定义消费组的情况下进行 Stream 消息的 独立消费,当 Stream 没有新消息时,甚至可以阻塞等待。Redis 设计了一个单独的消费指令 xread
,可以将 Stream 当成普通的消息队列(list)来使用。使用 xread
时,我们可以完全忽略 消费组(Consumer Group) 的存在,就好比 Stream 就是一个普通的列表(list)
客户端如果想要使用 xread
进行 顺序消费,一定要 记住当前消费 到哪里了,也就是返回的消息 ID。下次继续调用 xread
时,将上次返回的最后一个消息 ID 作为参数传递进去,就可以继续消费后续的消息
Stream 提供了 xreadgroup
指令可以进行消费组的组内消费,需要提供 消费组名称、消费者名称和起始消息 ID。它同 xread
一样,也可以阻塞等待新消息。读到新消息后,对应的消息 ID 就会进入消费者的 PEL (正在处理的消息) 结构里,客户端处理完毕后使用 xack
指令 通知服务器,本条消息已经处理完毕,该消息 ID 就会从 PEL 中移除
什么是缓存雪崩?
简介:缓存同一时间大面积的失效,所以,后面的请求都会落到数据库上,造成数据库短时间内承受大量请求而崩掉。
**有哪些解决办法?
- 事前:尽量保证整个 redis 集群的高可用性,发现机器宕机尽快补上。选择合适的内存淘汰策略。过期时间随机,不要再同一时间
- 事中:本地ehcache缓存 + hystrix限流&降级,避免MySQL崩掉
- 事后:利用 redis 持久化机制保存的数据尽快恢复缓存
什么是缓存穿透?
缓存穿透就是缓存穿透是指查询一个一定不存在的数据,大量请求的 key 根本不存在于缓存中,导致请求直接到了数据库上,根本没有经过缓存这一层。举个例子:某个黑客故意制造我们缓存中不存在的 key 发起大量请求,导致大量请求落到数据库。
一般MySQL 默认的最大连接数在 150 左右,这个可以通过 show variables like '%max_connections%';
命令来查看。最大连接数一个还只是一个指标,cpu,内存,磁盘,网络等无力条件都是其运行指标,这些指标都会限制其并发能力!所以,一般 3000 个并发请求就能打死大部分数据库了。
解决办法?
最基本的就是首先做好参数校验,一些不合法的参数请求直接抛出异常信息返回给客户端。比如查询的数据库 id 不能小于 0、传入的邮箱格式不对的时候直接返回错误消息给客户端等等。
1)缓存无效 key : 如果缓存和数据库都查不到某个 key 的数据就写一个到 redis 中去并设置过期时间,具体命令如下:SET key value EX 10086
。这种方式可以解决请求的 key 变化不频繁的情况,如果黑客恶意攻击,每次构建不同的请求key,会导致 redis 中缓存大量无效的 key 。很明显,这种方案并不能从根本上解决此问题。如果非要用这种方式来解决穿透问题的话,尽量将无效的 key 的过期时间设置短一点比如 1 分钟。一般情况下我们是这样设计 key 的: 表名:列名:主键名:主键值
。
**2)布隆过滤器:**布隆过滤器是一个非常神奇的数据结构,通过它我们可以非常方便地判断一个给定数据是否存在与海量数据中。我们需要的就是判断 key 是否合法,有没有感觉布隆过滤器就是我们想要找的那个“人”。具体是这样做的:把所有可能存在的请求的值都存放在布隆过滤器中,当用户请求过来,我会先判断用户发来的请求的值是否存在于布隆过滤器中。不存在的话,直接返回请求参数错误信息给客户端,存在的话才会走下面的流程。如将所有可能存在的数据哈希到一个足够大的bitmap中,一个一定不存在的数据会被 这个bitmap拦截掉,从而避免了对底层存储系统的查询压力。:
在高并发的情况下,大量的请求同时查询同一个key时,此时这个key正好失效了,就会导致同一时间,这些请求都会去查询数据库,这样的现象我们称为缓存击穿。
采用分布式锁,只有拿到锁的第一个线程去请求数据库,然后插入缓存,当然每次拿到锁的时候都要去查询一下缓存有没有。
我们在设置缓存的时候,一般会给缓存设置一个失效时间,过了这个时间,缓存就失效了。 对于一些热点的数据来说,当缓存失效以后会存在大量的请求过来,然后打到数据库去,从而可能导致数据库崩溃的情况
- 设置不同的失效时间
- 采用缓存击穿的解决办法,加锁
- 永不失效,就是采用定时任务对快要失效的缓存进行更新缓存和失效时间
一般来说,如果允许缓存可以稍微的跟数据库偶尔有不一致的情况,也就是说如果你的系统不是严格要求 “缓存+数据库” 必须保持一致性的话,最好不要做这个方案,即:读请求和写请求串行化,串到一个内存队列里去。串行化可以保证一定不会出现不一致的情况,但是它也会导致系统的吞吐量大幅度降低,用比正常情况下多几倍的机器去支撑线上的一个请求。
最经典的缓存+数据库读写的模式,就是 Cache Aside Pattern。
- 读的时候,先读缓存,缓存没有的话,就读数据库,然后取出数据后放入缓存,同时返回响应。
- 更新的时候,先更新数据库,然后再删除缓存。
为什么是删除缓存,而不是更新缓存?
原因很简单,很多时候,在复杂点的缓存场景,缓存不单单是数据库中直接取出来的值。
比如可能更新了某个表的一个字段,然后其对应的缓存,是需要查询另外两个表的数据并进行运算,才能计算出缓存最新的值的。
另外更新缓存的代价有时候是很高的。是不是说,每次修改数据库的时候,都一定要将其对应的缓存更新一份?也许有的场景是这样,但是对于比较复杂的缓存数据计算的场景,就不是这样了。如果你频繁修改一个缓存涉及的多个表,缓存也频繁更新。但是问题在于,这个缓存到底会不会被频繁访问到?
举个栗子,一个缓存涉及的表的字段,在 1 分钟内就修改了 20 次,或者是 100 次,那么缓存更新 20 次、100 次;但是这个缓存在 1 分钟内只被读取了 1 次,有大量的冷数据。实际上,如果你只是删除缓存的话,那么在 1 分钟内,这个缓存不过就重新计算一次而已,开销大幅度降低。用到缓存才去算缓存。
其实删除缓存,而不是更新缓存,就是一个 lazy 计算的思想,不要每次都重新做复杂的计算,不管它会不会用到,而是让它到需要被使用的时候再重新计算。像 mybatis,hibernate,都有懒加载思想。查询一个部门,部门带了一个员工的 list,没有必要说每次查询部门,都把里面的 1000 个员工的数据也同时查出来啊。80% 的情况,查这个部门,就只是要访问这个部门的信息就可以了。先查部门,同时要访问里面的员工,那么这个时候只有在你要访问里面的员工的时候,才会去数据库里面查询 1000 个员工。
**问题:先更新数据库,再删除缓存。**如果删除缓存失败了,那么会导致数据库中是新数据,缓存中是旧数据,数据就出现了不一致。
**解决思路:先删除缓存,再更新数据库。**如果数据库更新失败了,那么数据库中是旧数据,缓存中是空的,那么数据不会不一致。因为读的时候缓存没有,所以去读了数据库中的旧数据,然后更新到缓存中。
比较复杂的数据不一致问题分析:
数据发生了变更,先删除了缓存,然后要去修改数据库,此时还没修改。一个请求过来,去读缓存,发现缓存空了,去查询数据库,查到了修改前的旧数据,放到了缓存中。随后数据变更的程序完成了数据库的修改。完了,数据库和缓存中的数据不一样了...
为什么上亿流量高并发场景下,缓存会出现这个问题?
只有在对一个数据在并发的进行读写的时候,才可能会出现这种问题。其实如果说你的并发量很低的话,特别是读并发很低,每天访问量就 1 万次,那么很少的情况下,会出现刚才描述的那种不一致的场景。但是问题是,如果每天的是上亿的流量,每秒并发读是几万,每秒只要有数据更新的请求,就可能会出现上述的数据库+缓存不一致的情况。
解决方案如下:
更新数据的时候,根据数据的唯一标识,将操作路由之后,发送到一个 jvm 内部队列中。读取数据的时候,如果发现数据不在缓存中,那么将重新执行“读取数据+更新缓存”的操作,根据唯一标识路由之后,也发送到同一个 jvm 内部队列中。
一个队列对应一个工作线程,每个工作线程串行拿到对应的操作,然后一条一条的执行。这样的话,一个数据变更的操作,先删除缓存,然后再去更新数据库,但是还没完成更新。此时如果一个读请求过来,没有读到缓存,那么可以先将缓存更新的请求发送到队列中,此时会在队列中积压,然后同步等待缓存更新完成。
这里有一个优化点,一个队列中,其实多个更新缓存请求串在一起是没意义的,因此可以做过滤,如果发现队列中已经有一个更新缓存的请求了,那么就不用再放个更新请求操作进去了,直接等待前面的更新操作请求完成即可。
待那个队列对应的工作线程完成了上一个操作的数据库的修改之后,才会去执行下一个操作,也就是缓存更新的操作,此时会从数据库中读取最新的值,然后写入缓存中。
如果请求还在等待时间范围内,不断轮询发现可以取到值了,那么就直接返回;如果请求等待的时间超过一定时长,那么这一次直接从数据库中读取当前的旧值。
高并发的场景下,该解决方案要注意的问题:
- 读请求长时阻塞
由于读请求进行了非常轻度的异步化,所以一定要注意读超时的问题,每个读请求必须在超时时间范围内返回。
该解决方案,最大的风险点在于说,可能数据更新很频繁,导致队列中积压了大量更新操作在里面,然后读请求会发生大量的超时,最后导致大量的请求直接走数据库。务必通过一些模拟真实的测试,看看更新数据的频率是怎样的。
另外一点,因为一个队列中,可能会积压针对多个数据项的更新操作,因此需要根据自己的业务情况进行测试,可能需要部署多个服务,每个服务分摊一些数据的更新操作。如果一个内存队列里居然会挤压 100 个商品的库存修改操作,每个库存修改操作要耗费 10ms 去完成,那么最后一个商品的读请求,可能等待 10 * 100 = 1000ms = 1s 后,才能得到数据,这个时候就导致读请求的长时阻塞。
一定要做根据实际业务系统的运行情况,去进行一些压力测试,和模拟线上环境,去看看最繁忙的时候,内存队列可能会挤压多少更新操作,可能会导致最后一个更新操作对应的读请求,会 hang 多少时间,如果读请求在 200ms 返回,如果你计算过后,哪怕是最繁忙的时候,积压 10 个更新操作,最多等待 200ms,那还可以的。
如果一个内存队列中可能积压的更新操作特别多,那么你就要加机器,让每个机器上部署的服务实例处理更少的数据,那么每个内存队列中积压的更新操作就会越少。
其实根据之前的项目经验,一般来说,数据的写频率是很低的,因此实际上正常来说,在队列中积压的更新操作应该是很少的。像这种针对读高并发、读缓存架构的项目,一般来说写请求是非常少的,每秒的 QPS 能到几百就不错了。
我们来实际粗略测算一下。
如果一秒有 500 的写操作,如果分成 5 个时间片,每 200ms 就 100 个写操作,放到 20 个内存队列中,每个内存队列,可能就积压 5 个写操作。每个写操作性能测试后,一般是在 20ms 左右就完成,那么针对每个内存队列的数据的读请求,也就最多 hang 一会儿,200ms 以内肯定能返回了。
经过刚才简单的测算,我们知道,单机支撑的写 QPS 在几百是没问题的,如果写 QPS 扩大了 10 倍,那么就扩容机器,扩容 10 倍的机器,每个机器 20 个队列。
- 读请求并发量过高
这里还必须做好压力测试,确保恰巧碰上上述情况的时候,还有一个风险,就是突然间大量读请求会在几十毫秒的延时 hang 在服务上,看服务能不能扛的住,需要多少机器才能扛住最大的极限情况的峰值。
但是因为并不是所有的数据都在同一时间更新,缓存也不会同一时间失效,所以每次可能也就是少数数据的缓存失效了,然后那些数据对应的读请求过来,并发量应该也不会特别大。
- 多服务实例部署的请求路由
可能这个服务部署了多个实例,那么必须保证说,执行数据更新操作,以及执行缓存更新操作的请求,都通过 Nginx 服务器路由到相同的服务实例上。
比如说,对同一个商品的读写请求,全部路由到同一台机器上。可以自己去做服务间的按照某个请求参数的 hash 路由,也可以用 Nginx 的 hash 路由功能等等。
- 热点商品的路由问题,导致请求的倾斜
万一某个商品的读写请求特别高,全部打到相同的机器的相同的队列里面去了,可能会造成某台机器的压力过大。就是说,因为只有在商品数据更新的时候才会清空缓存,然后才会导致读写并发,所以其实要根据业务系统去看,如果更新频率不是太高的话,这个问题的影响并不是特别大,但是的确可能某些机器的负载会高一些。