Skip to content

Latest commit

 

History

History
332 lines (249 loc) · 6.89 KB

README.md

File metadata and controls

332 lines (249 loc) · 6.89 KB

semantic-sh

PyPI version Actions Status PyPI download total MIT license

semantic-sh is a SimHash implementation to detect and group similar texts by taking power of word vectors and transformer-based language models such as BERT.

Documentation

Requirements

  • fasttext
  • transformers
  • pytorch
  • numpy
  • flask

Installing via pip

$ pip install semantic-sh

Usage

from semantic_sh import SemanticSimHash

Use with BERT:

sh = SemanticSimHash(model_type='bert-base-multilingual-cased', dim=768)

Use with fasttext:

sh = SemanticSimHash(model_type='fasttext', dim=300, model_path='/path/to/cc.en.300.bin')

Use with GloVe:

sh = SemanticSimHash(model_type='glove', dim=300, model_path='/path/to/glove.6B.50d.txt')

Use with word2vec:

sh = SemanticSimHash(model_type='word2vec', dim=300, model_path='/path/to/en.w2v.txt')

Additional parameters

Customize threshold (default:0) , hash length (default: 256-bit) and add stop words list.

sh = SemanticSimHash(model_type='fasttext', key_size=128, dim=300, model_path='pat_to_fasttext_vectors.bin', thresh=0.8, stop_words=['the', 'i', 'you', 'he', 'she', 'it', 'we', 'they'])

Note: BERT-based models do not require stop words list.

Hash your text

sh.get_hash(['<your_text_0>', '<your_text_1>'])

Add document

Add your document to the proper group

sh.add_document(['<your_text_0>', '<your_text_1>'])

Find similar

Get all documents in the same group with the given text

sh.find_similar('<your_text>')

Get Hamming Distance between 2 texts

sh.get_distance('<first_text>', '<second_text>')

Go through all document groups

Get all similar document groups which have more than 1 document

for docs in sh.get_similar_groups():
   print(docs)

Save data

Save added documents, hash function, model and parameters

sh.save('model.dat')

Load from saved file

Load all parameters, documents, hash function and model from saved file

sh = SemanticSimHash.load('model.dat')

API Server

Easily deploy a simple text similarity engine on web.

Installation

$ git clone https://github.com/KeremZaman/semantic-sh.git

Standalone Usage

server.py [-h] [--host HOST] [--port PORT] [--model-type MODEL_TYPE]
                 [--model-path MODEL_PATH] [--key-size KEY_SIZE] [--dim DIM]
                 [--stop-words [STOP_WORDS [STOP_WORDS ...]]]
                 [--load-from LOAD_FROM]

optional arguments:
  -h, --help            show this help message and exit

app:
  --host HOST
  --port PORT

model:
  --model-type MODEL_TYPE
                        Type of model to run: fasttext or any pretrained model
                        name from huggingface/transformers
  --model-path MODEL_PATH
                        Path to vector files of fasttext models
  --key-size KEY_SIZE   Hash length in bits
  --dim DIM             Dimension of text representations according to chosen
                        model type
  --stop-words [STOP_WORDS [STOP_WORDS ...]]
                        List of stop words to exclude

loader:
  --load-from LOAD_FROM
                        Load previously saved state

Using with WSGI Container

from gevent.pywsgi import WSGIServer
from server import init_app

app = init_app(params) # same params as initialize SemantcSimHash object

http_server = WSGIServer(('', 5000), app)
http_server.serve_forever()

NOTE: Sample code uses gevent but you can use any WSGI container which can be used with Flask app object instead.

API Reference

POST /api/hash

Return hashes of given documents

Request Body

{
    "documents": [
        "Here is the first document",
        "and second document"
    ]
}       

Response Body

{
    "hashes": [
        "0x7f636944d8c8",
        "0x5d134944428a4"
    ]
}    

POST /api/add

Add given documents and return hash and custom IDs of the documents

Request Body

{
    "documents": [
        "Here is the first document",
        "and second document"
    ]
}
        

Response Body

{
    "documents": [
        {
            "id": 1,
            "hash": 0x5d134944428a4"
        },
        {
            "id": 2,
            "hash": 0x7f636944d8c8"
        }
    ]
}     

POST /api/find-similar

Return similar documents to given text

Request Body

{
    "text": "Here is the text"
}       

Response Body

{
    "similar_texts": [
        "Here is the text",
        "First text here",
        "Here is text"
    ]
}    

POST /api/distance

Return Hamming distance between source and target texts

Request Body

{
    "src": "Here is the source text",
    "tgt": "Target text for measuring distance"
}       

Response Body

{
    "distance": 21
}    

GET /api/similarity-groups

Return buckets having more than one document ID


GET /api/text/<int:id>

Return the document according to its ID

With docker

Run the api server on port 4000

docker run -ti -p 4000:4000 -v `pwd`/data:/opt/data  semantic-sh:latest --port=4000 --model-type=bert-base-multilingual-cased --model-path=/opt/data

With docker-compose

Run the api server on port 4000

docker-compose up -d semantic-sh

Some Implementation Details

This is a simplified implementation of simhash by just creating random vectors and assigning 1 or 0 according to the result of dot product of each of these vectors with represantation of the text.

License

MIT