Skip to content

Latest commit

 

History

History
124 lines (93 loc) · 4.44 KB

README.md

File metadata and controls

124 lines (93 loc) · 4.44 KB

🏘️ Degent Civil

Python Version Docker Documentation License

A sophisticated AI-driven town simulation system with autonomous characters, dynamic interactions, and realistic behaviors.

📚 Documentation | 🚀 Quick Start | 💡 Examples | 🤝 Contributing

✨ Features

  • 🤖 AI-Driven Characters: Autonomous NPCs with realistic behaviors and decision-making capabilities
  • 🔄 Dynamic State Management: Sophisticated state system for character behaviors and interactions
  • ⚡ Real-time Simulation: Live updates and interactions within the town environment
  • 🧠 Memory System: Advanced memory management using vector embeddings and semantic search
  • 🏢 Building System: Flexible building management with dynamic interactions
  • 🔗 LLM Integration: Seamless integration with Large Language Models for natural interactions

📋 Prerequisites

  • Python 3.8 or higher
  • Docker and Docker Compose
  • OpenAI API access (or compatible LLM service)

🚀 Quick Start

  1. Clone the Repository
git clone https://github.com/KingJiongEN/DegentCivil.git
cd DegentCivil
  1. Set Up Environment
python -m venv venv
source venv/bin/activate  # On Windows: venv\Scripts\activate
pip install -r requirements.txt
  1. Start Required Services
# Start Milvus
mkdir -p milvus/{db,minio}
docker-compose -f docker-compose_milvus.yml up -d

# Start Redis
docker run --name my-redis -p 6379:6379 -d redis
  1. Run the Service
DEBUG=1 Milvus=1 python main.py

📚 Documentation

Visit our comprehensive documentation for detailed information:

🛠️ Development Tools

Milvus Visualization

  • URL: localhost:18000
  • Username: minioadmin
  • Password: minioadmin

Memory Demo

export PYTHONPATH="{project_path}:$PYTHONPATH"
export OPENAI_API_KEY=your_api_key_here
python -m app.models.memory

📁 Project Structure

DegentCivil/
├── app/                    # Main application directory
│   ├── main.py            # Application entry point
│   ├── models/            # Data models
│   ├── services/          # Business logic
│   ├── llm/               # LLM integration
│   └── utils/             # Utility functions
├── config/                # Configuration files
├── docs/                  # Documentation
└── tests/                 # Test suite

🤝 Contributing

We welcome contributions! Please see our Contributing Guide for details.

📄 License

This project is licensed under the MIT License - see the LICENSE file for details.

🌟 Acknowledgments

  • OpenAI for LLM capabilities
  • Milvus for vector database
  • Redis for caching
  • All our contributors

Made with ❤️ by the Town Simulation Team