forked from brianolson/flops
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathflops.java
executable file
·497 lines (429 loc) · 16.5 KB
/
flops.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
/*
Trivial applet that displays a string - 4/96 PNL
*/
import java.awt.*;
import java.applet.Applet;
import java.util.Date;
public class flops extends Applet {
static void maybePrintenv(java.io.PrintWriter out, String key) {
String v = System.getProperty(key);
if (v != null) {
out.print(key);
out.print(": ");
out.print(v);
out.println();
}
}
TextArea ta = new TextArea();
public void init() {
add(ta);
ta.setVisible(true);
java.io.StringWriter os = new java.io.StringWriter();
java.io.PrintWriter pw = new java.io.PrintWriter(os);
test(pw, 2.0);
ta.setText(os.toString());
}
public static void main( String[] argv ) {
System.out.print(" FLOPS Java Program (Double Precision), V2.0 18 Dec 1992\n\n");
System.out.print(" Module Error RunTime MFLOPS\n");
System.out.print(" (usec)\n");
test(new java.io.PrintWriter(new java.io.OutputStreamWriter(System.out)));
}
static void test(java.io.PrintWriter out) {
test(out, 15.0);
}
static void test(java.io.PrintWriter out, double TLimit) {
maybePrintenv(out, "java.vm.name");
maybePrintenv(out, "java.vm.vendor");
maybePrintenv(out, "java.vm.version");
double nulltime, TimeArray[]; /* Variables needed for 'dtime()'. */
//double TLimit = 15; /* Threshold to determine Number of */
/* Loops to run. Fixed at 15.0 seconds.*/
double T[]; /* Global Array used to hold timing */
double sa,sb,sc,sd,one = 1,two = 2,three = 3;
double four = 4,five = 5,piref = 3.14159265358979324,piprg;
double scale,pierr;
double A0 = 1.0;
double A1 = -0.1666666666671334;
double A2 = 0.833333333809067E-2;
double A3 = 0.198412715551283E-3;
double A4 = 0.27557589750762E-5;
double A5 = 0.2507059876207E-7;
double A6 = 0.164105986683E-9;
double B0 = 1.0;
double B1 = -0.4999999999982;
double B2 = 0.4166666664651E-1;
double B3 = -0.1388888805755E-2;
double B4 = 0.24801428034E-4;
double B5 = -0.2754213324E-6;
double B6 = 0.20189405E-8;
double C0 = 1.0;
double C1 = 0.99999999668;
double C2 = 0.49999995173;
double C3 = 0.16666704243;
double C4 = 0.4166685027E-1;
double C5 = 0.832672635E-2;
double C6 = 0.140836136E-2;
double C7 = 0.17358267E-3;
double C8 = 0.3931683E-4;
double D1 = 0.3999999946405E-1;
double D2 = 0.96E-3;
double D3 = 0.1233153E-5;
double E2 = 0.48E-3;
double E3 = 0.411051E-6;
double s = 0, u,v,w, x = 0;
long loops = 15625, NLimit = 512000000;
long i, m, n;
TimeArray = new double[3];
T = new double[36];
/* Initialize the timer. */
dtime(TimeArray);
dtime(TimeArray);
scale = one;
T[1] = 1.0E+06/(double)loops;
/* Module 1. Calculate integral of df(x)/f(x) defined */
/* below. Result is ln(f(1)). There are 14 */
/* double precision operations per loop */
/* ( 7 +, 0 -, 6 *, 1 / ) that are included */
/* in the timing. */
/* 50.0% +, 00.0% -, 42.9% *, and 07.1% / */
n = loops;
sa = 0.0;
while ( sa < TLimit ) {
n = 2 * n;
x = one / (double)n;
s = 0.0; /* Loop 1. */
v = 0.0;
w = one;
dtime(TimeArray);
for( i = 1 ; i <= n-1 ; i++ ) {
v = v + w;
u = v * x;
s = s + (D1+u*(D2+u*D3))/(w+u*(D1+u*(E2+u*E3)));
}
dtime(TimeArray);
sa = TimeArray[1];
if ( n == NLimit ) break;
/* printf(" %10ld %12.5lf\n",n,sa); */
}
scale = 1.0E+06 / (double)n;
T[1] = scale;
/* Estimate nulltime ('for' loop time). */
dtime(TimeArray);
for( i = 1 ; i <= n-1 ; i++ ) {
}
dtime(TimeArray);
nulltime = T[1] * TimeArray[1];
if ( nulltime < 0.0 ) nulltime = 0.0;
T[2] = T[1] * sa - nulltime;
sa = (D1+D2+D3)/(one+D1+E2+E3);
sb = D1;
T[3] = T[2] / 14.0;
sa = x * ( sa + sb + two * s ) / two; /* Module 1 Results. */
sb = one / sa;
n = (long)( (double)( 40000 * (long)sb ) / scale );
sc = sb - 25.2;
T[4] = one / T[3];
out.print (" 1 " + sc + " " + T[2] + " " + T[4] + '\n');
m = n;
/* Module 2. Calculate value of PI from Taylor Series */
/* expansion of atan(1.0). There are 7 */
/* double precision operations per loop */
/* ( 3 +, 2 -, 1 *, 1 / ) that are included */
/* in the timing. */
/* 42.9% +, 28.6% -, 14.3% *, and 14.3% / */
s = -five;
sa = -one; /* Loop 2. */
dtime(TimeArray);
for ( i = 1 ; i <= m ; i++ ) {
s = -s;
sa = sa + s;
}
dtime(TimeArray);
T[5] = T[1] * TimeArray[1];
if ( T[5] < 0.0 ) T[5] = 0.0;
sc = (double)m;
u = sa;
v = 0.0; /* Loop 3. */
w = 0.0;
x = 0.0;
dtime(TimeArray);
for ( i = 1 ; i <= m ; i++) {
s = -s;
sa = sa + s;
u = u + two;
x = x +(s - u);
v = v - s * u;
w = w + s / u;
}
dtime(TimeArray);
T[6] = T[1] * TimeArray[1];
T[7] = ( T[6] - T[5] ) / 7.0;
m = (long)( sa * x / sc ); /* PI Results */
sa = four * w / five;
sb = sa + five / v;
sc = 31.25;
piprg = sb - sc / (v * v * v);
pierr = piprg - piref;
T[8] = one / T[7];
out.print (" 2 " + pierr + " " + (T[6]-T[5]) + " " + T[8] + '\n');
/* Module 3. Calculate integral of sin(x) from 0.0 to */
/* PI/3.0 using Trapazoidal Method. Result */
/* is 0.5. There are 17 double precision */
/* operations per loop (6 +, 2 -, 9 *, 0 /) */
/* included in the timing. */
/* 35.3% +, 11.8% -, 52.9% *, and 00.0% / */
/*******************************************************/
x = piref / ( three * (double)m ); /*********************/
s = 0.0; /* Loop 4. */
v = 0.0; /*********************/
dtime(TimeArray);
for( i = 1 ; i <= m-1 ; i++ ) {
v = v + one;
u = v * x;
w = u * u;
s = s + u * ((((((A6*w-A5)*w+A4)*w-A3)*w+A2)*w+A1)*w+one);
}
dtime(TimeArray);
T[9] = T[1] * TimeArray[1] - nulltime;
u = piref / three;
w = u * u;
sa = u * ((((((A6*w-A5)*w+A4)*w-A3)*w+A2)*w+A1)*w+one);
T[10] = T[9] / 17.0; /*********************/
sa = x * ( sa + two * s ) / two; /* sin(x) Results. */
sb = 0.5; /*********************/
sc = sa - sb;
T[11] = one / T[10];
/*********************/
/* DO NOT REMOVE */
/* THIS PRINTOUT! */
/*********************/
out.print(" 3 " + sc + " " + T[9] + " " + T[11] + "\n");
/************************************************************/
/* Module 4. Calculate Integral of cos(x) from 0.0 to PI/3 */
/* using the Trapazoidal Method. Result is */
/* sin(PI/3). There are 15 double precision */
/* operations per loop (7 +, 0 -, 8 *, and 0 / ) */
/* included in the timing. */
/* 50.0% +, 00.0% -, 50.0% *, 00.0% / */
/************************************************************/
A3 = -A3;
A5 = -A5;
x = piref / ( three * (double)m ); /*********************/
s = 0.0; /* Loop 5. */
v = 0.0; /*********************/
dtime(TimeArray);
for( i = 1 ; i <= m-1 ; i++ ) {
u = (double)i * x;
w = u * u;
s = s + w*(w*(w*(w*(w*(B6*w+B5)+B4)+B3)+B2)+B1)+one;
}
dtime(TimeArray);
T[12] = T[1] * TimeArray[1] - nulltime;
u = piref / three;
w = u * u;
sa = w*(w*(w*(w*(w*(B6*w+B5)+B4)+B3)+B2)+B1)+one;
T[13] = T[12] / 15.0; /*******************/
sa = x * ( sa + one + two * s ) / two; /* Module 4 Result */
u = piref / three; /*******************/
w = u * u;
sb = u * ((((((A6*w+A5)*w+A4)*w+A3)*w+A2)*w+A1)*w+A0);
sc = sa - sb;
T[14] = one / T[13];
/*********************/
/* DO NOT REMOVE */
/* THIS PRINTOUT! */
/*********************/
out.print(" 4 " + sc + " " + T[12] + " " + T[14] + "\n");
/************************************************************/
/* Module 5. Calculate Integral of tan(x) from 0.0 to PI/3 */
/* using the Trapazoidal Method. Result is */
/* ln(cos(PI/3)). There are 29 double precision */
/* operations per loop (13 +, 0 -, 15 *, and 1 /)*/
/* included in the timing. */
/* 46.7% +, 00.0% -, 50.0% *, and 03.3% / */
/************************************************************/
x = piref / ( three * (double)m ); /*********************/
s = 0.0; /* Loop 6. */
v = 0.0; /*********************/
dtime(TimeArray);
for( i = 1 ; i <= m-1 ; i++ )
{
u = (double)i * x;
w = u * u;
v = u * ((((((A6*w+A5)*w+A4)*w+A3)*w+A2)*w+A1)*w+one);
s = s + v / (w*(w*(w*(w*(w*(B6*w+B5)+B4)+B3)+B2)+B1)+one);
}
dtime(TimeArray);
T[15] = T[1] * TimeArray[1] - nulltime;
u = piref / three;
w = u * u;
sa = u*((((((A6*w+A5)*w+A4)*w+A3)*w+A2)*w+A1)*w+one);
sb = w*(w*(w*(w*(w*(B6*w+B5)+B4)+B3)+B2)+B1)+one;
sa = sa / sb;
T[16] = T[15] / 29.0; /*******************/
sa = x * ( sa + two * s ) / two; /* Module 5 Result */
sb = 0.6931471805599453; /*******************/
sc = sa - sb;
T[17] = one / T[16];
/*********************/
/* DO NOT REMOVE */
/* THIS PRINTOUT! */
/*********************/
out.print(" 5 " + sc + " " + T[15] + " " + T[17] + "\n");
/************************************************************/
/* Module 6. Calculate Integral of sin(x)*cos(x) from 0.0 */
/* to PI/4 using the Trapazoidal Method. Result */
/* is sin(PI/4)^2. There are 29 double precision */
/* operations per loop (13 +, 0 -, 16 *, and 0 /)*/
/* included in the timing. */
/* 46.7% +, 00.0% -, 53.3% *, and 00.0% / */
/************************************************************/
x = piref / ( four * (double)m ); /*********************/
s = 0.0; /* Loop 7. */
v = 0.0; /*********************/
dtime(TimeArray);
for( i = 1 ; i <= m-1 ; i++ )
{
u = (double)i * x;
w = u * u;
v = u * ((((((A6*w+A5)*w+A4)*w+A3)*w+A2)*w+A1)*w+one);
s = s + v*(w*(w*(w*(w*(w*(B6*w+B5)+B4)+B3)+B2)+B1)+one);
}
dtime(TimeArray);
T[18] = T[1] * TimeArray[1] - nulltime;
u = piref / four;
w = u * u;
sa = u*((((((A6*w+A5)*w+A4)*w+A3)*w+A2)*w+A1)*w+one);
sb = w*(w*(w*(w*(w*(B6*w+B5)+B4)+B3)+B2)+B1)+one;
sa = sa * sb;
T[19] = T[18] / 29.0; /*******************/
sa = x * ( sa + two * s ) / two; /* Module 6 Result */
sb = 0.25; /*******************/
sc = sa - sb;
T[20] = one / T[19];
/*********************/
/* DO NOT REMOVE */
/* THIS PRINTOUT! */
/*********************/
out.print(" 6 " + sc + " " + T[18] + " " + T[20] + "\n");
/*******************************************************/
/* Module 7. Calculate value of the definite integral */
/* from 0 to sa of 1/(x+1), x/(x*x+1), and */
/* x*x/(x*x*x+1) using the Trapizoidal Rule.*/
/* There are 12 double precision operations */
/* per loop ( 3 +, 3 -, 3 *, and 3 / ) that */
/* are included in the timing. */
/* 25.0% +, 25.0% -, 25.0% *, and 25.0% / */
/*******************************************************/
/*********************/
s = 0.0; /* Loop 8. */
w = one; /*********************/
sa = 102.3321513995275;
v = sa / (double)m;
dtime(TimeArray);
for ( i = 1 ; i <= m-1 ; i++)
{
x = (double)i * v;
u = x * x;
s = s - w / ( x + w ) - x / ( u + w ) - u / ( x * u + w );
}
dtime(TimeArray);
T[21] = T[1] * TimeArray[1] - nulltime;
/*********************/
/* Module 7 Results */
/*********************/
T[22] = T[21] / 12.0;
x = sa;
u = x * x;
sa = -w - w / ( x + w ) - x / ( u + w ) - u / ( x * u + w );
sa = 18.0 * v * (sa + two * s );
m = -2000 * (long)sa;
m = (long)( (double)m / scale );
sc = sa + 500.2;
T[23] = one / T[22];
/********************/
/* DO NOT REMOVE */
/* THIS PRINTOUT! */
/********************/
out.print(" 7 " + sc + " " + T[21] + " " + T[23] + "\n");
/************************************************************/
/* Module 8. Calculate Integral of sin(x)*cos(x)*cos(x) */
/* from 0 to PI/3 using the Trapazoidal Method. */
/* Result is (1-cos(PI/3)^3)/3. There are 30 */
/* double precision operations per loop included */
/* in the timing: */
/* 13 +, 0 -, 17 * 0 / */
/* 46.7% +, 00.0% -, 53.3% *, and 00.0% / */
/************************************************************/
x = piref / ( three * (double)m ); /*********************/
s = 0.0; /* Loop 9. */
v = 0.0; /*********************/
dtime(TimeArray);
for( i = 1 ; i <= m-1 ; i++ )
{
u = (double)i * x;
w = u * u;
v = w*(w*(w*(w*(w*(B6*w+B5)+B4)+B3)+B2)+B1)+one;
s = s + v*v*u*((((((A6*w+A5)*w+A4)*w+A3)*w+A2)*w+A1)*w+one);
}
dtime(TimeArray);
T[24] = T[1] * TimeArray[1] - nulltime;
u = piref / three;
w = u * u;
sa = u*((((((A6*w+A5)*w+A4)*w+A3)*w+A2)*w+A1)*w+one);
sb = w*(w*(w*(w*(w*(B6*w+B5)+B4)+B3)+B2)+B1)+one;
sa = sa * sb * sb;
T[25] = T[24] / 30.0; /*******************/
sa = x * ( sa + two * s ) / two; /* Module 8 Result */
sb = 0.29166666666666667; /*******************/
sc = sa - sb;
T[26] = one / T[25];
/*********************/
/* DO NOT REMOVE */
/* THIS PRINTOUT! */
/*********************/
out.print(" 8 " + sc + " " + T[24] + " " + T[26] + "\n");
/**************************************************/
/* MFLOPS(1) output. This is the same weighting */
/* used for all previous versions of the flops.c */
/* program. Includes Modules 2 and 3 only. */
/**************************************************/
T[27] = ( five * (T[6] - T[5]) + T[9] ) / 52.0;
T[28] = one / T[27];
/**************************************************/
/* MFLOPS(2) output. This output does not include */
/* Module 2, but it still does 9.2% FDIV's. */
/**************************************************/
T[29] = T[2] + T[9] + T[12] + T[15] + T[18];
T[29] = (T[29] + four * T[21]) / 152.0;
T[30] = one / T[29];
/**************************************************/
/* MFLOPS(3) output. This output does not include */
/* Module 2, but it still does 3.4% FDIV's. */
/**************************************************/
T[31] = T[2] + T[9] + T[12] + T[15] + T[18];
T[31] = (T[31] + T[21] + T[24]) / 146.0;
T[32] = one / T[31];
/**************************************************/
/* MFLOPS(4) output. This output does not include */
/* Module 2, and it does NO FDIV's. */
/**************************************************/
T[33] = (T[9] + T[12] + T[18] + T[24]) / 91.0;
T[34] = one / T[33];
out.print("\n");
out.print(" Iterations = " + m + "\n");
out.print(" NullTime (usec) = " + nulltime + "\n");
out.print(" MFLOPS(1) = " + T[28] + "\n");
out.print(" MFLOPS(2) = " + T[30] + "\n");
out.print(" MFLOPS(3) = " + T[32] + "\n");
out.print(" MFLOPS(4) = " + T[34] + "\n\n");
out.flush();
}
static void dtime( double p[] ) {
double q = p[2];
Date td = new Date();
p[2] = td.getTime() / 1000.0;//the new time
p[1] = p[2] - q;
}
}