-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathNeural_Net.py
981 lines (797 loc) · 41.9 KB
/
Neural_Net.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
import torch
import torch.nn as nn
import torch.nn.functional as fnc
from tensorboardX import SummaryWriter
import numpy as np
from .layers.utils import segment_sum
from .layers.RBFLayer import RBFLayer
from .layers.InteractionBlock import InteractionBlock
from .layers.OutputBlock import OutputBlock
from .layers.activation_fn import *
from .grimme_d3.grimme_d3 import *
def softplus_inverse(x):
'''numerically stable inverse of softplus transform'''
return x + np.log(-np.expm1(-x))
def gather_nd(params, indices):
'''
the input indices must be a 2d tensor in the form of [[a,b,..,c],...],
which represents the location of the elements.
This function comes from:
https://discuss.pytorch.org/t/implement-tf-gather-nd-in-pytorch/37502/6
'''
# Normalize indices values
params_size = list(params.size())
assert len(indices.size()) == 2
assert len(params_size) >= indices.size(1)
# Generate indices
indices = indices.t().long()
ndim = indices.size(0)
idx = torch.zeros_like(indices[0]).long()
m = 1
for i in range(ndim)[::-1]:
idx = idx + indices[i] * m
m *= params.size(i)
params = params.reshape((-1, *tuple(torch.tensor(params.size()[ndim:]))))
return params[idx]
class PhysNet(nn.Module):
def __init__(self,
# Dimensionality of feature vector
F=128,
# Number of radial basis functions
K=64,
# Cutoff distance for short range interactions
sr_cut=10.0,
# Cutoff distance for long range interactions
# (default: no cutoff)
lr_cut=None,
# Number of building blocks to be stacked
num_blocks=5,
# Number of residual layers for atomic refinements of
# feature vector
num_residual_atomic=2,
# Number of residual layers for refinement of message vector
num_residual_interaction=3,
# Number of residual layers for the output blocks
num_residual_output=1,
# Adds electrostatic contributions to atomic energy
use_electrostatic=True,
# Adds dispersion contributions to atomic energy
use_dispersion=True,
# s6 coefficient for d3 dispersion, by default is learned
s6=None,
# s8 coefficient for d3 dispersion, by default is learned
s8=None,
# a1 coefficient for d3 dispersion, by default is learned
a1=None,
# a2 coefficient for d3 dispersion, by default is learned
a2=None,
# Initial value for output energy shift
# (makes convergence faster)
Eshift=0.0,
# Initial value for output energy scale
# (makes convergence faster)
Escale=1.0,
# Initial value for output charge shift
Qshift=0.0,
# Initial value for output charge scale
Qscale=1.0,
# Half (else double counting) of the Coulomb constant
# (default is in units e=1, eV=1, A=1)
kehalf=7.199822675975274,
# Activation function
activation_fn=shifted_softplus,
# Single or double precision
dtype=torch.float32,
# Rate for dropout,
rate=0.0,
# Device to use
device="cuda",
#Summary writter
writer = None
):
super(PhysNet, self).__init__()
assert (num_blocks > 0)
self.num_blocks = num_blocks
self.dtype = dtype
self.kehalf = kehalf
self.F = F
self.K = K
self.sr_cut = sr_cut # cutoff for neural network interactions
self.lr_cut = lr_cut # cutoff for long-range interactions
self.use_electrostatic = use_electrostatic
self.use_dispersion = use_dispersion
self.activation_fn = activation_fn
self.rate = rate
#Check if your model can be passed to cuda.
if device=="cuda":
# assert torch.cuda.is_available()
cuda_device = torch.device("cuda")
self.device = cuda_device
else:
print('You do not select cuda, code will be run in cpu')
print('Your calculations might be slow.')
self.device ="cpu"
# Atom embeddings (we go up to Pu(94): 95 - 1 ( for index 0))
self.embeddings = nn.Parameter(torch.empty(95, self.F,device=self.device).uniform_(-np.sqrt(3), np.sqrt(3)).requires_grad_(True))
# torch.histogram(self.embeddings)
# Initialize the radial basis functions
self.rbf_layer = RBFLayer(K, sr_cut,device=self.device)
# Initialize variables for d3 dispersion (the way this is done,
# positive values are guaranteed)
if s6 is None:
self.s6 = nn.Parameter(fnc.softplus(
torch.tensor(softplus_inverse(d3_s6), requires_grad=True, dtype=dtype, device=self.device)))
else:
self.s6 = torch.tensor(s6, requires_grad=False, dtype=dtype, device=self.device)
if s8 is None:
self.s8 = nn.Parameter(fnc.softplus(
torch.tensor(softplus_inverse(d3_s8), requires_grad=True, dtype=dtype, device=self.device)))
else:
self.s8 = torch.tensor(s8, requires_grad=False, dtype=dtype, device=self.device)
if a1 is None:
self.a1 = nn.Parameter(fnc.softplus(
torch.tensor(softplus_inverse(d3_a1), requires_grad=True, dtype=dtype, device=self.device)))
else:
self.a1 = torch.tensor(a1, requires_grad=False, dtype=dtype, device=self.device)
if a2 is None:
self.a2 = nn.Parameter(fnc.softplus(
torch.tensor(softplus_inverse(d3_a2), requires_grad=True, dtype=dtype, device=self.device)))
else:
self.a2 = torch.tensor(a2, requires_grad=False, dtype=dtype, device=self.device)
if writer is None:
self.writer = SummaryWriter()
elif writer == False:
pass
else:
self.writer = writer
self.writer.add_histogram("embeddings", self.embeddings, 0)
self.writer.add_scalar("d3-s6", self.s6)
self.writer.add_scalar("d3-s8", self.s8)
self.writer.add_scalar("d3-a1", self.a1)
self.writer.add_scalar("d3-a2", self.a2)
# # Initialize output scale/shift variables
self.Eshift = nn.Parameter(torch.empty(95,device=self.device).new_full((95,), Eshift).type(dtype))
self.Escale = nn.Parameter(torch.empty(95,device=self.device).new_full((95,), Escale).type(dtype))
self.Qshift = nn.Parameter(torch.empty(95,device=self.device).new_full((95,), Qshift).type(dtype))
self.Qscale = nn.Parameter(torch.empty(95,device=self.device).new_full((95,), Qscale).type(dtype))
# Output scale for extra variables
self.ascale = nn.Parameter(torch.ones(95, device=self.device, dtype=dtype))
self.bscale = nn.Parameter(torch.ones(95, device=self.device, dtype=dtype))
self.lscale = nn.Parameter(torch.ones(95, device=self.device, dtype=dtype))
self.nuscale = nn.Parameter(torch.ones(95, device=self.device, dtype=dtype))
self.interaction_block = nn.ModuleList([InteractionBlock(
K, F, num_residual_atomic, num_residual_interaction,
activation_fn=self.activation_fn, rate=self.rate,device=self.device)
for _ in range(self.num_blocks)])
self.output_block = nn.ModuleList([OutputBlock(
F, num_residual_output, n_output=1, activation_fn=self.activation_fn, rate=self.rate,device=self.device)
for _ in range(self.num_blocks)])
self.output_block_evid = nn.ModuleList([OutputBlock(
F, num_residual_output, n_output=5, activation_fn=self.activation_fn, rate=self.rate,device=self.device)
for _ in range(self.num_blocks)])
self.output_block_md_evid = nn.ModuleList([OutputBlock(
F, num_residual_output, n_output=6, activation_fn=self.activation_fn, rate=self.rate,device=self.device)
for _ in range(self.num_blocks)])
self.build_requires_grad_dict()
def train(self, mode=True):
""" Turn on training mode. """
super(PhysNet, self).train(mode=mode)
for name, param in self.named_parameters():
param.requires_grad = self.requires_grad_dict[name]
def eval(self):
super(PhysNet,self).eval()
for name, param in self.named_parameters():
param.requires_grad = False
def build_requires_grad_dict(self):
"""
Build a dictionary of which parameters require gradient information (are
trained). Can be manually edited to freeze certain parameters)
"""
self.requires_grad_dict = {}
for name, param in self.named_parameters():
self.requires_grad_dict[name] = param.requires_grad
# ------------------------------------
# Evidential layer
# ------------------------------------
def evidential_layer(self, loglambdas, logalphas, logbetas):
min_val = 1e-6
lambdas = torch.nn.Softplus()(loglambdas) + min_val
alphas = torch.nn.Softplus()(logalphas) + min_val + 1 # add 1 for numerical contraints of Gamma function
betas = torch.nn.Softplus()(logbetas) + min_val
return lambdas, alphas, betas
def multidimensional_evidential_layer(self,Ea,Qa,l00,l10,l11,nu):
"""
Multidimensional evidential layer for 2 degrees of freedom (E and Q).
Taken from Meinert and Lavin, 2022 (https://arxiv.org/abs/2104.06135)
"""
min_val = 1e-6
mu_e = Ea
mu_q = Qa
L00 = torch.nn.Softplus()(l00) + min_val
L10 = l10 + min_val
L11 = torch.nn.Softplus()(l11) + min_val
nu = 10.0*(torch.tanh(nu)+1.0)/2.0 + 3.0
v = torch.stack((mu_e,mu_q,L00,L10,L11,nu),dim=-1)
return v
def calculate_interatomic_distances(self, R, idx_i, idx_j, offsets=None):
''' Calculate interatomic distances '''
Ri = torch.gather(R, 0, idx_i.type(torch.int64).view(-1, 1).repeat(1, 3))
Rj = torch.gather(R, 0, idx_j.type(torch.int64).view(-1, 1).repeat(1, 3))
if offsets is not None:
Rj = Rj + offsets
p = nn.ReLU(inplace=True)
m = p(torch.sum((Ri - Rj) ** 2, dim=-1))
Dij = torch.sqrt(m)
# ReLU: y = max(0, x), prevent negative sqrt
return Dij
@torch.jit.export
def evidential_atomic_properties(self, Z, R, idx_i, idx_j, offsets=None, sr_idx_i=None, sr_idx_j=None,
sr_offsets=None):
''' Calculate evidential atomic properties '''
# Calculate distances (for long range interaction)
Dij_lr = self.calculate_interatomic_distances(R, idx_i, idx_j, offsets=offsets)
# Optionally, it is possible to calculate separate distances
# for short range interactions (computational efficiency)
if sr_idx_i is not None and sr_idx_j is not None:
Dij_sr = self.calculate_interatomic_distances(R, sr_idx_i, sr_idx_j, offsets=sr_offsets)
else:
sr_idx_i = idx_i
sr_idx_j = idx_j
Dij_sr = Dij_lr
# Calculate radial basis function expansion
rbf = self.rbf_layer(Dij_sr.to(self.device))
# Initialize feature vectors according to embeddings for
# nuclear charges
z_pros = Z.view(-1, 1).expand(-1, self.F).type(torch.int64)
x = torch.gather(self.embeddings, 0, z_pros)
# Apply blocks
Ea = 0 # atomic energy
Qa = 0 # atomic charge
lambdas, alpha, beta = 0, 0, 0
nhloss = 0 # non-hierarchicality loss
for i in range(self.num_blocks):
x = self.interaction_block[i](x, rbf, sr_idx_i, sr_idx_j)
out = self.output_block_evid[i](x)
Ea = Ea + out[:, 0]
Qa = Qa + out[:, 4]
lambdas = lambdas + out[:, 1]
alpha = alpha + out[:, 2]
beta = beta + out[:, 3]
# Compute non-hierarchicality loss
out2 = out ** 2
if i > 0:
nhloss = nhloss + torch.mean(out2 / (out2 + lastout2 + 1e-7))
lastout2 = out2
# Apply scaling/shifting
Ea = self.Escale[Z.type(torch.int64)] * Ea \
+ self.Eshift[Z.type(torch.int64)]
Qa = self.Qscale[Z.type(torch.int64)] * Qa \
+ self.Qshift[Z.type(torch.int64)]
lambdas = self.lscale[Z.type(torch.int64)] * lambdas
alpha = self.ascale[Z.type(torch.int64)]* alpha
beta = self.bscale[Z.type(torch.int64)] * beta
return Ea,lambdas, alpha, beta, Qa, Dij_lr, nhloss
@torch.jit.export
def multidimensional_evidential_atomic_properties(self, Z, R, idx_i, idx_j, offsets=None, sr_idx_i=None,
sr_idx_j=None,
sr_offsets=None):
''' Calculate evidential atomic properties using the multidimensional model '''
# Calculate distances (for long range interaction)
Dij_lr = self.calculate_interatomic_distances(R, idx_i, idx_j, offsets=offsets)
# Optionally, it is possible to calculate separate distances
# for short range interactions (computational efficiency)
if sr_idx_i is not None and sr_idx_j is not None:
Dij_sr = self.calculate_interatomic_distances(R, sr_idx_i, sr_idx_j, offsets=sr_offsets)
else:
sr_idx_i = idx_i
sr_idx_j = idx_j
Dij_sr = Dij_lr
# Calculate radial basis function expansion
rbf = self.rbf_layer(Dij_sr.to(self.device))
# Initialize feature vectors according to embeddings for
# nuclear charges
z_pros = Z.view(-1, 1).expand(-1, self.F).type(torch.int64)
x = torch.gather(self.embeddings, 0, z_pros)
# Apply blocks
Ea = 0 # atomic energy
Qa = 0 # atomic charge
l00, l10, l11, nu = 0, 0, 0, 0
nhloss = 0 # non-hierarchicality loss
for i in range(self.num_blocks):
x = self.interaction_block[i](x, rbf, sr_idx_i, sr_idx_j)
out = self.output_block_md_evid[i](x)
Ea = Ea + out[:, 0]
Qa = Qa + out[:, 1]
l00 = l00 + out[:, 2]
l10 = l10 + out[:, 3]
l11 = l11 + out[:, 4]
nu = nu + out[:, 5]
# Compute non-hierarchicality loss
out2 = out ** 2
if i > 0:
nhloss = nhloss + torch.mean(out2 / (out2 + lastout2 + 1e-7))
lastout2 = out2
# Apply scaling/shifting
Ea = self.Escale[Z.type(torch.int64)] * Ea \
+ self.Eshift[Z.type(torch.int64)]
Qa = self.Qscale[Z.type(torch.int64)] * Qa \
+ self.Qshift[Z.type(torch.int64)]
l00 = self.lscale[Z.type(torch.int64)] * l00
l10 = self.ascale[Z.type(torch.int64)] * l10
l11 = self.bscale[Z.type(torch.int64)] * l11
nu = self.nuscale[Z.type(torch.int64)] * nu
return Ea, Qa, l00, l10, l11, nu, Dij_lr, nhloss
@torch.jit.export
def atomic_properties(self, Z, R, idx_i, idx_j, offsets=None, sr_idx_i=None, sr_idx_j=None,
sr_offsets=None):
''' Calculates the atomic energies, charges and distances
(needed if unscaled charges are wanted e.g. for loss function) '''
# Calculate distances (for long range interaction)
Dij_lr = self.calculate_interatomic_distances(R, idx_i, idx_j,offsets=offsets)
# Optionally, it is possible to calculate separate distances
# for short range interactions (computational efficiency)
if sr_idx_i is not None and sr_idx_j is not None:
Dij_sr = self.calculate_interatomic_distances(R, sr_idx_i, sr_idx_j, offsets=sr_offsets)
else:
sr_idx_i = idx_i
sr_idx_j = idx_j
Dij_sr = Dij_lr
# Calculate radial basis function expansion
rbf = self.rbf_layer(Dij_sr.to(self.device)).to(self.device)
# Initialize feature vectors according to embeddings for
# nuclear charges
z_pros = Z.view(-1, 1).expand(-1, self.F).type(torch.int64)
x = torch.gather(self.embeddings, 0, z_pros)
# Apply blocks
Ea = 0 # atomic energy
Qa = 0 # atomic charge
nhloss = 0 # non-hierarchicality loss
for i in range(self.num_blocks):
x = self.interaction_block[i](x, rbf, sr_idx_i, sr_idx_j)
out = self.output_block[i](x)
Ea = Ea + out[:, 0]
Qa = Qa + out[:, 1]
# Compute non-hierarchicality loss
out2 = out ** 2
if i > 0:
nhloss = nhloss + torch.mean(out2 / (out2 + lastout2 + 1e-7))
lastout2 = out2
# Apply scaling/shifting
Ea = self.Escale[Z.type(torch.int64)] * Ea \
+ self.Eshift[Z.type(torch.int64)]
# + 0*tf.reduce_sum(R, -1))
# Last term necessary to guarantee no "None" in force evaluation
Qa = self.Qscale[Z.type(torch.int64)] * Qa \
+ self.Qshift[Z.type(torch.int64)]
return Ea, Qa, Dij_lr, nhloss
# Here you compute only the energy as the sum and add the dispersion corrections
@torch.jit.export
def energy_evidential_from_atomic_properties(
self, Ea,lambdas, alpha, beta, Qa, Dij, Z, idx_i, idx_j, batch_seg=None):
''' Calculates the energy given the scaled atomic properties (in order
to prevent recomputation if atomic properties are calculated) '''
if batch_seg is None:
batch_seg = torch.zeros_like(Z).type(torch.int64)
# Add electrostatic and dispersion contribution to atomic energy
if self.use_electrostatic:
Ea = Ea + self.electrostatic_energy_per_atom(Dij, Qa, idx_i, idx_j)
if self.use_dispersion:
if self.lr_cut is not None:
Ea = Ea + d3_autoev * edisp(Z, Dij / d3_autoang, idx_i, idx_j,
s6=self.s6, s8=self.s8, a1=self.a1, a2=self.a2,
cutoff=self.lr_cut / d3_autoang, device=self.device)
else:
Ea = Ea + d3_autoev * edisp(Z, Dij / d3_autoang, idx_i, idx_j,
s6=self.s6, s8=self.s8, a1=self.a1, a2=self.a2,device=self.device)
Ea = torch.squeeze(segment_sum(Ea,batch_seg,device=self.device))
lambdas = torch.squeeze(segment_sum(lambdas,batch_seg,device=self.device))
alpha = torch.squeeze(segment_sum(alpha,batch_seg,device=self.device))
beta = torch.squeeze(segment_sum(beta,batch_seg,device=self.device))
lambdas, alpha, beta = self.evidential_layer(lambdas, alpha, beta)
return Ea,lambdas,alpha,beta
@torch.jit.export
def energy_md_evidential_from_atomic_properties(
self, Ea,Qa, l00,l10,l11,nu, Dij, Z, idx_i, idx_j, batch_seg=None):
''' Calculates the energy given the scaled atomic properties (in order
to prevent recomputation if atomic properties are calculated) '''
if batch_seg is None:
batch_seg = torch.zeros_like(Z).type(torch.int64)
# Add electrostatic and dispersion contribution to atomic energy
if self.use_electrostatic:
Ea = Ea + self.electrostatic_energy_per_atom(Dij, Qa, idx_i, idx_j)
if self.use_dispersion:
if self.lr_cut is not None:
Ea = Ea + d3_autoev * edisp(Z, Dij / d3_autoang, idx_i, idx_j,
s6=self.s6, s8=self.s8, a1=self.a1, a2=self.a2,
cutoff=self.lr_cut / d3_autoang, device=self.device)
else:
Ea = Ea + d3_autoev * edisp(Z, Dij / d3_autoang, idx_i, idx_j,
s6=self.s6, s8=self.s8, a1=self.a1, a2=self.a2,device=self.device)
Ea = torch.squeeze(segment_sum(Ea,batch_seg,device=self.device))
Qa = torch.squeeze(segment_sum(Qa, batch_seg, device=self.device))
l00 = torch.squeeze(segment_sum(l00,batch_seg,device=self.device))
l10 = torch.squeeze(segment_sum(l10,batch_seg,device=self.device))
l11 = torch.squeeze(segment_sum(l11,batch_seg,device=self.device))
nu = torch.squeeze(segment_sum(nu,batch_seg,device=self.device))
pred = self.multidimensional_evidential_layer(Ea,Qa,l00,l10,l11,nu)
return pred
@torch.jit.export
def energy_from_atomic_properties(
self, Ea, Qa, Dij, Z, idx_i, idx_j, batch_seg=None):
''' Calculates the energy given the scaled atomic properties (in order
to prevent recomputation if atomic properties are calculated) '''
if batch_seg is None:
batch_seg = torch.zeros_like(Z)
# Add electrostatic and dispersion contribution to atomic energy
if self.use_electrostatic:
Ea = Ea + self.electrostatic_energy_per_atom(Dij, Qa, idx_i, idx_j)
if self.use_dispersion:
if self.lr_cut is not None:
Ea = Ea + d3_autoev * edisp(Z, Dij / d3_autoang, idx_i, idx_j,
s6=self.s6, s8=self.s8, a1=self.a1, a2=self.a2,
cutoff=self.lr_cut / d3_autoang, device=self.device)
else:
Ea = Ea + d3_autoev * edisp(Z, Dij / d3_autoang, idx_i, idx_j,
s6=self.s6, s8=self.s8, a1=self.a1, a2=self.a2,device=self.device)
Ea = torch.squeeze(segment_sum(Ea,batch_seg,device=self.device))
return Ea
@torch.jit.export
def energy_and_forces_from_atomic_properties(
self, Ea, Qa, Z, R, idx_i, idx_j, batch_seg=None, create_graph=True):
''' Calculates the energy and forces given the scaled atomic atomic
properties (in order to prevent recomputation if atomic properties
are calculated .
Calculation of the forces was done following the implementation of
spookynet. '''
Dij = self.calculate_interatomic_distances(
R, idx_i, idx_j)
energy = self.energy_from_atomic_properties(
Ea, Qa, Dij, Z, idx_i, idx_j, batch_seg)
reduced_energy = torch.sum(energy.clone())
if idx_i.numel() > 0: # autograd will fail if there are no distances
grad = torch.autograd.grad([reduced_energy], [R], create_graph=create_graph)[0]
if grad is not None: # necessary for torch.jit compatibility
forces = -grad
else:
forces = torch.zeros_like(R)
else: # if there are no distances, the forces are zero
forces = torch.zeros_like(R)
return energy, forces
#Here the charges are rescalled and the energy is computed with the new charges
@torch.jit.export
def energy_evidential_from_scaled_atomic_properties(
self, Ea, lambdas, alpha, beta, Qa, Dij, Z, idx_i, idx_j, Q_tot=None, batch_seg=None):
''' Calculates the energy given the atomic properties (in order to
prevent recomputation if atomic properties are calculated) '''
if batch_seg is None:
batch_seg = torch.zeros_like(Z).type(torch.int64)
# Scale charges such that they have the desired total charge
Qa = self.scaled_charges(Z, Qa, Q_tot, batch_seg)
return self.energy_evidential_from_atomic_properties(
Ea, lambdas, alpha, beta, Qa, Dij, Z, idx_i, idx_j, batch_seg)
@torch.jit.export
def energy_md_evidential_from_scaled_atomic_properties(
self, Ea, Qa, l00,l10,l11,nu, Dij, Z, idx_i, idx_j, Q_tot=None, batch_seg=None):
''' Calculates the energy given the atomic properties (in order to
prevent recomputation if atomic properties are calculated) '''
if batch_seg is None:
batch_seg = torch.zeros_like(Z).type(torch.int64)
# Scale charges such that they have the desired total charge
Qa = self.scaled_charges(Z, Qa, Q_tot, batch_seg)
pred = self.energy_md_evidential_from_atomic_properties(
Ea,Qa,l00,l10,l11,nu, Dij, Z, idx_i, idx_j, batch_seg)
# Return individual charges to calculate dipole moment
return pred,Qa
@torch.jit.export
def energy_from_scaled_atomic_properties(
self, Ea, Qa, Dij, Z, idx_i, idx_j, Q_tot=None, batch_seg=None):
''' Calculates the energy given the atomic properties (in order to
prevent recomputation if atomic properties are calculated) '''
if batch_seg is None:
batch_seg = torch.zeros_like(Z).type(torch.int64)
# Scale charges such that they have the desired total charge
Qa = self.scaled_charges(Z, Qa, Q_tot, batch_seg)
return self.energy_from_atomic_properties(
Ea, Qa, Dij, Z, idx_i, idx_j, batch_seg)
@torch.jit.export
def energy_and_forces_from_scaled_atomic_properties(
self, Ea, Qa, Z, R, idx_i, idx_j, Q_tot=None, batch_seg=None, create_graph=True):
''' Calculates the energy and force given the atomic properties
(in order to prevent recomputation if atomic properties are
calculated) '''
Dij = self.calculate_interatomic_distances(
R, idx_i, idx_j)
energy = self.energy_from_scaled_atomic_properties(
Ea, Qa, Dij, Z, idx_i, idx_j, Q_tot, batch_seg)
if idx_i.numel() > 0: # autograd will fail if there are no distances
grad = torch.autograd.grad([energy.sum()], [R], create_graph=create_graph)[0]
if grad is not None: # necessary for torch.jit compatibility
forces = -grad
else:
forces = torch.zeros_like(R)
else: # if there are no distances, the forces are zero
forces = torch.zeros_like(R)
return energy, forces
#Obtention of global properties
@torch.jit.export
def energy_evidential(self, Z, R, idx_i, idx_j, Q_tot=None,batch_seg=None, offsets=None,
sr_idx_i=None, sr_idx_j=None, sr_offsets=None):
''' Calculates the total energy (including electrostatic
interactions) '''
Ea, lambdas, alpha, beta, Qa, Dij, _ = self.evidential_atomic_properties(
Z, R, idx_i, idx_j, offsets, sr_idx_i, sr_idx_j, sr_offsets)
energy, lambdas, alpha, beta = self.energy_evidential_from_scaled_atomic_properties(
Ea, lambdas, alpha, beta, Qa, Dij, Z, idx_i, idx_j, Q_tot, batch_seg)
return energy, lambdas, alpha, beta
@torch.jit.export
def energy_md_evidential(self, Z, R, idx_i, idx_j, Q_tot=None,batch_seg=None, offsets=None,
sr_idx_i=None, sr_idx_j=None, sr_offsets=None):
''' Calculates the total energy (including electrostatic
interactions) '''
Ea, Qa, l00, l10, l11, nu, Dij_lr, _ = self.multidimensional_evidential_atomic_properties(
Z, R, idx_i, idx_j, offsets, sr_idx_i, sr_idx_j, sr_offsets)
pred, _ = self.energy_md_evidential_from_scaled_atomic_properties(Ea, Qa, l00,l10,l11,nu,
Dij_lr, Z, idx_i, idx_j, Q_tot, batch_seg)
return pred
@torch.jit.export
def energy(self, Z, R, idx_i, idx_j, Q_tot=None, batch_seg=None, offsets=None,
sr_idx_i=None, sr_idx_j=None, sr_offsets=None):
''' Calculates the total energy (including electrostatic
interactions) '''
Ea, Qa, Dij, _ = self.atomic_properties(
Z, R, idx_i, idx_j, offsets, sr_idx_i, sr_idx_j, sr_offsets)
energy = self.energy_from_atomic_properties(
Ea, Qa, Dij, Z, idx_i, idx_j, Q_tot, batch_seg)
return energy
@torch.jit.export
def energy_and_forces_evidential(self, Z, R, idx_i, idx_j, Q_tot=None,batch_seg=None, offsets=None,
sr_idx_i=None, sr_idx_j=None, sr_offsets=None, create_graph=True):
''' Calculates the total energy (including electrostatic
interactions)
NOTE: This function computes the forces as the derivative of the energy
'''
Ea, lambdas, alpha, beta, Qa, Dij, _ = self.evidential_atomic_properties(
Z, R, idx_i, idx_j, offsets, sr_idx_i, sr_idx_j, sr_offsets)
energy, lambdas, alpha, beta = self.energy_evidential_from_scaled_atomic_properties(
Ea, lambdas, alpha, beta, Qa, Dij, Z, idx_i, idx_j, Q_tot, batch_seg)
if idx_i.numel() > 0: # autograd will fail if there are no distances
grad = torch.autograd.grad([torch.sum(energy)], [R], create_graph=create_graph)[0]
if grad is not None: # necessary for torch.jit compatibility
forces = -grad
else:
forces = torch.zeros_like(R)
else: # if there are no distances, the forces are zero
forces = torch.zeros_like(R)
return energy, lambdas, alpha, beta, forces
@torch.jit.export
def energy_and_forces_md_evidencial(self,Z,R,idx_i,idx_j,Q_tot=None,batch_seg=None, offsets=None,
sr_idx_i=None, sr_idx_j=None, sr_offsets=None, create_graph=True):
'''
Calculate the energy,forces and dipole given the atomic properties
'''
if batch_seg is None:
batch_seg = torch.zeros_like(Z).type(torch.int64)
Ea, Qa, l00, l10, l11, nu, Dij_lr, _ = self.multidimensional_evidential_atomic_properties(
Z, R, idx_i, idx_j, offsets, sr_idx_i, sr_idx_j, sr_offsets)
pred, Qas = self.energy_md_evidential_from_scaled_atomic_properties(Ea, Qa, l00,l10,l11,nu,
Dij_lr, Z, idx_i, idx_j, Q_tot, batch_seg)
if len(pred.size()) != 1:
energy = torch.sum(pred[:,0])
else:
energy = torch.sum(pred[0])
if idx_i.numel() > 0: # autograd will fail if there are no distances
grad = torch.autograd.grad([energy], [R], create_graph=create_graph)[0]
if grad is not None: # necessary for torch.jit compatibility
forces = -grad
else:
forces = torch.zeros_like(R)
else: # if there are no distances, the forces are zero
forces = torch.zeros_like(R)
# Calculate dipole
QR_t = torch.stack([Qas*R[:,0],Qas*R[:,1],Qas*R[:,2]],dim=1)
dip = segment_sum(QR_t,batch_seg,device=self.device)
return pred, dip, forces
@torch.jit.export
def energy_forces_and_others_evidential(self, Z, R, idx_i, idx_j, Q_tot=None,batch_seg=None, offsets=None,
sr_idx_i=None, sr_idx_j=None, sr_offsets=None, create_graph=True):
''' Calculates the total energy (including electrostatic
interactions)
NOTE: This function computes the forces as the derivative of the energy
'''
Ea, lambdas, alpha, beta, Qa, Dij, _ = self.evidential_atomic_properties(
Z, R, idx_i, idx_j, offsets, sr_idx_i, sr_idx_j, sr_offsets)
energy, lambdas, alpha, beta = self.energy_evidential_from_scaled_atomic_properties(
Ea, lambdas, alpha, beta, Qa, Dij, Z, idx_i, idx_j, Q_tot, batch_seg)
if idx_i.numel() > 0: # autograd will fail if there are no distances
grad = torch.autograd.grad([torch.sum(energy)], [R], create_graph=create_graph)[0]
if grad is not None: # necessary for torch.jit compatibility
forces = -grad
else:
forces = torch.zeros_like(R)
else: # if there are no distances, the forces are zero
forces = torch.zeros_like(R)
return energy, lambdas, alpha, beta, Qa, forces
@torch.jit.export
def energy_forces_and_hessian_evidential(
self, Z, R, idx_i, idx_j, Q_tot=None, batch_seg=None, offsets=None,
sr_idx_i=None, sr_idx_j=None, sr_offsets=None, create_graph=True):
''' Calculates the total energy (including electrostatic
interactions)
NOTE: This function computes the forces as the derivative of the energy
'''
Ea, lambdas, alpha, beta, Qa, Dij, _ = self.evidential_atomic_properties(
Z, R, idx_i, idx_j, offsets, sr_idx_i, sr_idx_j, sr_offsets)
energy, lambdas, alpha, beta = self.energy_evidential_from_scaled_atomic_properties(
Ea, lambdas, alpha, beta, Qa, Dij, Z, idx_i, idx_j, Q_tot, batch_seg)
if idx_i.numel() > 0: # autograd will fail if there are no distances
grad = torch.autograd.grad([torch.sum(energy)], [R], create_graph=create_graph)[0]
if grad is not None: # necessary for torch.jit compatibility
forces = -grad
else:
forces = torch.zeros_like(R)
else: # if there are no distances, the forces are zero
forces = torch.zeros_like(R)
# Calculation of the hessian
# Taken from SpookyNet implementation
grad = -forces.view(-1)
s = grad.size(0)
hessian = energy.new_zeros((s, s))
if idx_i.numel() > 0:
for idx in range(s): # loop through entries of the hessian
tmp = torch.autograd.grad([grad[idx]], [R], retain_graph=(idx < s))[0]
if tmp is not None: # necessary for torch.jit compatibility
hessian[idx] = tmp.view(-1)
return energy, lambdas, alpha, beta, Qa,forces, hessian
def energy_hessian_and_forces_md_evidencial(self,Z,R,idx_i,idx_j,Q_tot=None,batch_seg=None, offsets=None,
sr_idx_i=None, sr_idx_j=None, sr_offsets=None, create_graph=True):
'''
Calculate the energy,forces and dipole given the atomic properties
'''
if batch_seg is None:
batch_seg = torch.zeros_like(Z).type(torch.int64)
Ea, Qa, l00, l10, l11, nu, Dij_lr, _ = self.multidimensional_evidential_atomic_properties(
Z, R, idx_i, idx_j, offsets, sr_idx_i, sr_idx_j, sr_offsets)
pred, Qas = self.energy_md_evidential_from_scaled_atomic_properties(Ea, Qa, l00,l10,l11,nu,
Dij_lr, Z, idx_i, idx_j, Q_tot, batch_seg)
if len(pred.size()) != 1:
energy = torch.sum(pred[:,0])
else:
energy = torch.sum(pred[0])
if idx_i.numel() > 0: # autograd will fail if there are no distances
grad = torch.autograd.grad([energy], [R], create_graph=create_graph)[0]
if grad is not None: # necessary for torch.jit compatibility
forces = -grad
else:
forces = torch.zeros_like(R)
else: # if there are no distances, the forces are zero
forces = torch.zeros_like(R)
# Calculate Hessian
grad = -forces.view(-1)
s = grad.size(0)
hessian = energy.new_zeros((s, s))
if idx_i.numel() > 0:
for idx in range(s): # loop through entries of the hessian
tmp = torch.autograd.grad([grad[idx]], [R], retain_graph=(idx < s))[0]
if tmp is not None: # necessary for torch.jit compatibility
hessian[idx] = tmp.view(-1)
# Calculate dipole
QR_t = torch.stack([Qas*R[:,0],Qas*R[:,1],Qas*R[:,2]],dim=1)
dip = segment_sum(QR_t,batch_seg,device=self.device)
return pred, dip, forces,hessian
@torch.jit.export
def energy_and_forces(
self, Z, R, idx_i, idx_j, Q_tot=None, batch_seg=None, offsets=None,
sr_idx_i=None, sr_idx_j=None, sr_offsets=None, create_graph=True):
''' Calculates the total energy and forces (including electrostatic
interactions)'''
Ea, Qa, Dij, _ = self.atomic_properties(Z, R, idx_i, idx_j, offsets,
sr_idx_i, sr_idx_j, sr_offsets)
energy = self.energy_from_atomic_properties(
Ea, Qa, Dij, Z, idx_i, idx_j, Q_tot, batch_seg)
reduced_energy = torch.sum(energy)
if idx_i.numel() > 0: # autograd will fail if there are no distances
grad = torch.autograd.grad([reduced_energy], [R], create_graph=create_graph)[0]
if grad is not None: # necessary for torch.jit compatibility
forces = -grad
else:
forces = torch.zeros_like(R)
else: # if there are no distances, the forces are zero
forces = torch.zeros_like(R)
return energy, forces
@torch.jit.export
def energy_and_forces_and_atomic_properties(
self, Z, R, idx_i, idx_j, Q_tot=None, batch_seg=None, offsets=None,
sr_idx_i=None, sr_idx_j=None, sr_offsets=None, create_graph=True):
''' Calculates the total energy and forces (including electrostatic
interactions)'''
Ea, Qa, Dij, nhloss = self.atomic_properties(Z, R, idx_i, idx_j, offsets,
sr_idx_i, sr_idx_j, sr_offsets)
energy = self.energy_from_atomic_properties(
Ea, Qa, Dij, Z, idx_i, idx_j, Q_tot, batch_seg)
if idx_i.numel() > 0: # autograd will fail if there are no distances
grad = torch.autograd.grad(
[torch.sum(energy)], [R], create_graph=create_graph)[0]
if grad is not None: # necessary for torch.jit compatibility
forces = -grad
else:
forces = torch.zeros_like(R)
else: # if there are no distances, the forces are zero
forces = torch.zeros_like(R)
return energy, forces, Ea, Qa, nhloss
@torch.jit.export
def energy_and_forces_and_charges(
self, Z, R, idx_i, idx_j, Q_tot=None, batch_seg=None, offsets=None,
sr_idx_i=None, sr_idx_j=None, sr_offsets=None, create_graph=True):
''' Calculates the total energy and forces (including electrostatic
interactions)'''
Ea, Qa, Dij, nhloss = self.atomic_properties(
Z, R, idx_i, idx_j, offsets,
sr_idx_i, sr_idx_j, sr_offsets)
energy = self.energy_from_atomic_properties(
Ea, Qa, Dij, Z, idx_i, idx_j, Q_tot, batch_seg)
reduced_energy = torch.sum(energy)
if idx_i.numel() > 0: # autograd will fail if there are no distances
grad = torch.autograd.grad(
[reduced_energy], [R], create_graph=create_graph)[0]
if grad is not None: # necessary for torch.jit compatibility
forces = -grad
else:
forces = torch.zeros_like(R)
else: # if there are no distances, the forces are zero
forces = torch.zeros_like(R)
return energy, forces, Qa
def scaled_charges(self, Z, Qa, Q_tot=None, batch_seg=None):
''' Returns scaled charges such that the sum of the partial atomic
charges equals Q_tot (defaults to 0) '''
if batch_seg is None:
batch_seg = torch.zeros_like(Z)
# Number of atoms per batch (needed for charge scaling)
Na_helper = torch.ones_like(batch_seg, dtype=self.dtype)
Na_per_batch = segment_sum(Na_helper,batch_seg.type(torch.int64),device=self.device)
# Na_per_batch = segment_coo(torch.ones_like(batch_seg, dtype=self.dtype),
# index=batch_seg.type(torch.int64),reduce="sum")
if Q_tot is None: # Assume desired total charge zero if not given
Q_tot = torch.zeros_like(Na_per_batch, dtype=self.dtype)
# Return scaled charges (such that they have the desired total charge)
Q_correct = Q_tot - segment_sum(Qa,batch_seg.type(torch.int64),device=self.device)
Q_scaled = Qa + torch.gather((Q_correct / Na_per_batch), 0, batch_seg.type(torch.int64))
return Q_scaled
def _switch(self, Dij):
''' Switch function for electrostatic interaction (switches between
shielded and unshielded electrostatic interaction) '''
cut = self.sr_cut / 2
x = Dij / cut
x3 = x * x * x
x4 = x3 * x
x5 = x4 * x
return torch.where(Dij < cut, 6 * x5 - 15 * x4 + 10 * x3, torch.ones_like(Dij))
def electrostatic_energy_per_atom(self, Dij, Qa, idx_i, idx_j):
''' Calculates the electrostatic energy per atom for very small
distances, the 1/r law is shielded to avoid singularities '''
# Gather charges
Qi = torch.gather(Qa, 0, idx_i.type(torch.int64))
Qj = torch.gather(Qa, 0, idx_j.type(torch.int64))
# Calculate variants of Dij which we need to calculate
# the various shielded/non-shielded potentials
DijS = torch.sqrt(Dij * Dij + 1.0) # shielded distance
# Calculate value of switching function
switch = self._switch(Dij) # normal switch
cswitch = 1.0 - switch # complementary switch
# Calculate shielded/non-shielded potentials
if self.lr_cut is None: # no non-bonded cutoff
Eele_ordinary = 1.0 / Dij # ordinary electrostatic energy
Eele_shielded = 1.0 / DijS # shielded electrostatic energy
# Combine shielded and ordinary interactions and apply prefactors
Eele = self.kehalf * Qi * Qj * (
cswitch * Eele_shielded + switch * Eele_ordinary)
else: # with non-bonded cutoff
cut = self.lr_cut
cut2 = self.lr_cut * self.lr_cut
Eele_ordinary = 1.0 / Dij + Dij / cut2 - 2.0 / cut
Eele_shielded = 1.0 / DijS + DijS / cut2 - 2.0 / cut
# Combine shielded and ordinary interactions and apply prefactors
Eele = self.kehalf * Qi * Qj * (
cswitch * Eele_shielded + switch * Eele_ordinary)
Eele = torch.where(Dij <= cut, Eele, torch.zeros_like(Eele))
Eele_f = segment_sum(Eele,idx_i,device=self.device)
return Eele_f