-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathcalculator.py
392 lines (324 loc) · 14.4 KB
/
calculator.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
# Standard imports
import torch
import numpy as np
import argparse
#ASE importations
from ase.calculators.calculator import Calculator
from ase.neighborlist import neighbor_list
#Neural network imports
from Neural_Net import PhysNet
from .layers.activation_fn import *
'''
Calculator for the atomic simulation environment (ASE)
that evaluates energies and forces using a neural network.
'''
class PhysNetCalculator(Calculator):
implemented_properties = ['energy', 'energy_and_uncertainty', 'forces','hessian']
def __init__(self,
# ASE atoms object
atoms,
# ckpt file to restore the model (can also be a list for ensembles)
checkpoint,
# Respective config file for PhysNet architecture
config,
# System charge
charge=0,
# Cutoff distance for long range interactions (default: no cutoff)
lr_cut = None,
# Activation function
activation_fn="shift_softplus",
hessian=False,
# Single or double precision
dtype=torch.float64):
# Read config file to ensure same PhysNet architecture as during fit
# Initiate parser
parser = argparse.ArgumentParser(fromfile_prefix_chars='@')
# Add arguments
parser.add_argument("--restart", type=str, default='No',
help="Restart training from a specific folder")
parser.add_argument("--num_features", default=128, type=int)
parser.add_argument("--num_basis", default=64, type=int)
parser.add_argument("--num_blocks", default=5, type=int)
parser.add_argument("--num_residual_atomic", default=2, type=int)
parser.add_argument("--num_residual_interaction", default=3, type=int)
parser.add_argument("--num_residual_output", default=1, type=int)
parser.add_argument("--cutoff", default=10.0, type=float)
parser.add_argument("--use_electrostatic", default=1, type=int)
parser.add_argument("--use_dispersion", default=1, type=int)
parser.add_argument("--grimme_s6", default=None, type=float)
parser.add_argument("--grimme_s8", default=None, type=float)
parser.add_argument("--grimme_a1", default=None, type=float)
parser.add_argument("--grimme_a2", default=None, type=float)
parser.add_argument("--dataset", type=str)
parser.add_argument("--num_train", type=int)
parser.add_argument("--num_valid", type=int)
parser.add_argument("--batch_size", type=int)
parser.add_argument("--valid_batch_size", type=int)
parser.add_argument("--seed", default=None, type=int)
parser.add_argument("--max_steps", default=10000, type=int)
parser.add_argument("--learning_rate", default=0.001, type=float)
parser.add_argument("--decay_steps", default=1000, type=int)
parser.add_argument("--decay_rate", default=0.1, type=float)
parser.add_argument("--max_norm", default=1000.0, type=float)
parser.add_argument("--ema_decay", default=0.999, type=float)
parser.add_argument("--rate", default=0.0, type=float)
parser.add_argument("--l2lambda", default=0.0, type=float)
parser.add_argument("--nhlambda", default=0.1, type=float)
parser.add_argument("--lambda_conf",default=0.2,type=float)
parser.add_argument("--summary_interval", default=5, type=int)
parser.add_argument("--validation_interval", default=5, type=int)
parser.add_argument("--show_progress", default=True, type=bool)
parser.add_argument("--save_interval", default=5, type=int)
parser.add_argument("--record_run_metadata", default=0, type=int)
parser.add_argument('--device', default='cuda', type=str)
parser.add_argument('--DER_type',default=None,type=str)
# Read config file
args = parser.parse_args(["@" + config])
# Create neighborlist
if lr_cut is None:
self._sr_cutoff = args.cutoff
self._lr_cutoff = None
self._use_neighborlist = False
else:
self._sr_cutoff = args.cutoff
self._lr_cutoff = lr_cut
self._use_neighborlist = True
# Periodic boundary conditions
self.pbc = atoms.pbc
self.cell = atoms.cell.diagonal()
# Set up device
self.device = args.device
# Set up hessian flag
self.hessian_active = hessian
# Set up DER type
self.DER_type = args.DER_type
# Initiate calculator
Calculator.__init__(self)
# Set checkpoint file(s)
self._checkpoint = checkpoint
# Create PhysNet model
self._model = PhysNet(
F=args.num_features,
K=args.num_basis,
sr_cut=args.cutoff,
num_blocks=args.num_blocks,
num_residual_atomic=args.num_residual_atomic,
num_residual_interaction=args.num_residual_interaction,
num_residual_output=args.num_residual_output,
use_electrostatic=(args.use_electrostatic == 1),
use_dispersion=(args.use_dispersion == 1),
s6=args.grimme_s6,
s8=args.grimme_s8,
a1=args.grimme_a1,
a2=args.grimme_a2,
writer=False,
activation_fn=shifted_softplus,
device=args.device)
self._Z = torch.tensor(atoms.get_atomic_numbers(), dtype=torch.int32,device=self.device)
self._R = torch.tensor(atoms.get_positions(), dtype=torch.float32,requires_grad=True,device=self.device)
self._Q_tot = torch.tensor([charge],dtype=dtype,device=self.device)
self._idx_i, self._idx_j = self.get_indices(atoms,device=self.device)
# Initiate Embedded flag
# self.pcpot = None
def load_checkpoint(path):
if path is not None:
checkpoint = torch.load(path)
return checkpoint
# Load neural network parameter
latest_ckpt = load_checkpoint(self.checkpoint)
self._model.load_state_dict(latest_ckpt['model_state_dict'])
self._model.eval()
self._last_atoms = None
# Calculate properties once to initialize everything
# self._calculate_all_properties(atoms)
# self.calculation_required(atoms)
self.calculate(atoms,properties=self.implemented_properties)
# Set last_atoms to None as pcpot get enabled later and recalculation
# becomes necessary again
self._last_atoms = None
Calculator.__init__(self)
def get_indices(self, atoms,device='cpu'):
# Number of atoms
N = len(atoms)
# Indices pointing to atom at each batch image
idx = torch.arange(end=N,dtype=torch.int32).to(device)
# Indices for atom pairs ij - Atom i
idx_i = idx.repeat(int(N) - 1)
# Indices for atom pairs ij - Atom j
idx_j = torch.roll(idx, -1, dims=0)
if N>=2:
for Na in torch.arange(2, N):
Na_tmp = Na.cpu()
idx_j = torch.concat(
[idx_j, torch.roll(idx, int(-Na_tmp.numpy()), dims=0)],
dim=0)
idx_i = torch.sort(idx_i)[0]
return idx_i.type(torch.int64), idx_j.type(torch.int64)
def calculation_required(self, atoms):
# Check positions, atomic numbers, unit cell and pbc
if self.last_atoms is None:
return True
else:
return atoms != self.last_atoms
def calculate(self, atoms, properties=None, system_changes=None):
# find neighbors and offsets
if self.use_neighborlist or any(atoms.get_pbc()):
idx_i, idx_j, S = neighbor_list('ijS', atoms, self.lr_cutoff)
offsets = np.dot(S, atoms.get_cell())
sr_idx_i, sr_idx_j, sr_S = neighbor_list(
'ijS', atoms, self.sr_cutoff)
sr_offsets = np.dot(sr_S, atoms.get_cell())
else:
idx_i = self.idx_i
idx_j = self.idx_j
offsets = None
sr_idx_i = None
sr_idx_j = None
sr_offsets = None
# Calculate energy
# (in case multiple NNs are used as ensemble, take the average)
# Only one NN
self.model.eval()
self._R = torch.tensor(atoms.get_positions(), dtype=torch.float32,requires_grad=True,device=self.device)
if self.DER_type == 'simple' or 'Lipz':
if self.hessian_active:
self._last_energy, lambdas, alpha, beta, self._last_charges, self._last_forces, self._last_hessian = \
self.model.energy_forces_and_hessian_evidential(self.Z, self.R, idx_i, idx_j, Q_tot=self.Q_tot,
batch_seg=None,
offsets=offsets, sr_idx_i=sr_idx_i,
sr_idx_j=sr_idx_j,
sr_offsets=sr_offsets)
else:
self._last_energy, lambdas, alpha, beta, self._last_charges, self._last_forces = \
self.model.energy_forces_and_others_evidential(self.Z, self.R, idx_i, idx_j, Q_tot=self.Q_tot,
batch_seg=None,
offsets=offsets, sr_idx_i=sr_idx_i,
sr_idx_j=sr_idx_j,
sr_offsets=sr_offsets)
self._sigma2 = beta.detach().cpu().numpy()/(alpha.detach().cpu().numpy()-1)
self._var = (1/lambdas.detach().cpu().numpy())*self.sigma2
# Convert results to numpy array
self._last_energy = self._last_energy.detach().cpu().numpy()
self._last_forces = self._last_forces.clone().detach().cpu().numpy()
if self.hessian_active:
self._last_hessian = self._last_hessian.clone().detach().cpu().numpy()
else:
self._last_hessian = None
elif self.DER_type == 'MD':
if self.hessian_active:
pred, Dip, self._last_forces, self._last_hessian = \
self.model.energy_hessian_and_forces_md_evidencial(self.Z, self.R, idx_i, idx_j, Q_tot=self.Q_tot,
batch_seg=None)
else:
pred, Dip, self._last_forces = \
self.model.energy_and_forces_md_evidencial(self.Z, self.R, idx_i, idx_j, Q_tot=self.Q_tot,
batch_seg=None)
# Predictions from the NN, first index is the energy second index is the charges
mu = [pred[0].detach().cpu().numpy(), pred[1].detach().cpu().numpy()]
# Uncertainty
L = torch.zeros((2, 2), device=self.device)
L[0, 0] = pred[2]
L[1, 0] = pred[3]
L[1, 1] = pred[4]
sigma = torch.matmul(L, L.transpose(1, 0))
nu = pred[5].detach().cpu().numpy()
sigma2 = nu / (nu - 3) * sigma
var = 1 / nu * sigma2
self._last_energy = mu[0]
self._sigma2 = sigma[0, 0].detach().cpu().numpy()
self._var = var[0, 0].detach().cpu().numpy()
# Convert results to numpy array
self._last_energy = self._last_energy
self._last_forces = self._last_forces.clone().detach().cpu().numpy()
if self.hessian_active:
self._last_hessian = self._last_hessian.clone().detach().cpu().numpy()
else:
self._last_hessian = None
# prevents some problems... but not for me, it actually does one
# self._last_energy = np.array(1*[self.last_energy])
# Store a copy of the atoms object
# Store results in results dictionary
self.results['energy'] = self.last_energy
self.results['forces'] = self.last_forces
self.results['hessian'] = self.last_hessian
self._last_atoms = atoms.copy()
def get_potential_energy(self, atoms, force_consistent=False):
if self.calculation_required(atoms):
self.calculate(atoms)
return self.results['energy']
def get_potential_energy_and_uncertainty(self, atoms):
if self.calculation_required(atoms):
self.calculate(atoms)
return self.last_energy, self.variance, self.sigma2
def get_potential_energy_uncertainty_and_forces(self, atoms):
if self.calculation_required(atoms):
self.calculate(atoms)
return self.last_energy, self.variance, self.sigma2, self.last_forces
def get_forces(self,atoms):
if self.calculation_required(atoms):
self.calculate(atoms)
return self.last_forces
def get_hessian(self, atoms):
if self.calculation_required(atoms):
self.calculate(atoms)
return self.last_hessian
@property
def last_atoms(self):
return self._last_atoms
@property
def last_energy(self):
return self._last_energy
@property
def last_forces(self):
return self._last_forces
@property
def last_hessian(self):
return self._last_hessian
@property
def variance(self):
return self._var
@property
def sigma2(self):
return self._sigma2
@property
def sr_cutoff(self):
return self._sr_cutoff
@property
def lr_cutoff(self):
return self._lr_cutoff
@property
def use_neighborlist(self):
return self._use_neighborlist
@property
def model(self):
return self._model
@property
def checkpoint(self):
return self._checkpoint
@property
def Z(self):
return self._Z
@property
def Q_tot(self):
return self._Q_tot
@property
def R(self):
return self._R
@property
def idx_i(self):
return self._idx_i
@property
def idx_j(self):
return self._idx_j
@property
def energy(self):
return self._energy
@property
def forces(self):
return self._forces
@property
def hessian(self):
return self._hessian
@property
def energy_and_uncertainty(self):
return self._energy_and_uncertainty