-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathrun_train.py
985 lines (828 loc) · 38.8 KB
/
run_train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
# Standard importations
import torch
import torch.nn as nn
from tensorboardX import SummaryWriter
import os
import sys
import numpy as np
import argparse
import logging
import string
import random
from torch_ema import ExponentialMovingAverage
# For Time measurement
from datetime import datetime
from time import time
# Neural Network importations
from cleaning.Submit.Neural_Net import PhysNet
from layers.utils import segment_sum
from layers.activation_fn import *
from cleaning.Submit.Neural_Net import gather_nd
from DataContainer import DataContainer
#Other importations
# Configure logging environment
logging.basicConfig(filename='train.log', level=logging.DEBUG)
# ------------------------------------------------------------------------------
# Command line arguments
# ------------------------------------------------------------------------------
# Initiate parser
parser = argparse.ArgumentParser(fromfile_prefix_chars='@')
# Add arguments
parser.add_argument("--restart", type=str, default='No',
help="Restart training from a specific folder")
parser.add_argument("--checkpoint-file", type=str, default=None,
help="File to be loaded if model is restarted")
parser.add_argument("--num_features", default=128, type=int,
help="Dimensionality of feature vectors")
parser.add_argument("--num_basis", default=64, type=int,
help="Number of radial basis functions")
parser.add_argument("--num_blocks", default=5, type=int,
help="Number of interaction blocks")
parser.add_argument("--num_residual_atomic", default=2, type=int,
help="Number of residual layers for atomic refinements")
parser.add_argument("--num_residual_interaction", default=3, type=int,
help="Number of residual layers for the message phase")
parser.add_argument("--num_residual_output", default=1, type=int,
help="Number of residual layers for the output blocks")
parser.add_argument("--cutoff", default=10.0, type=float,
help="Cutoff distance for short range interactions")
parser.add_argument("--use_electrostatic", default=1, type=int,
help="Use electrostatics in energy prediction (0/1)")
parser.add_argument("--use_dispersion", default=1, type=int,
help="Use dispersion in energy prediction (0/1)")
parser.add_argument("--grimme_s6", default=None, type=float,
help="Grimme s6 dispersion coefficient")
parser.add_argument("--grimme_s8", default=None, type=float,
help="Grimme s8 dispersion coefficient")
parser.add_argument("--grimme_a1", default=None, type=float,
help="Grimme a1 dispersion coefficient")
parser.add_argument("--grimme_a2", default=None, type=float,
help="Grimme a2 dispersion coefficient")
parser.add_argument("--dataset", type=str,
help="File path to dataset")
# This number is configured for the size of the QM9 dataset
parser.add_argument("--num_train", default=103130, type=int,
help="Number of training samples")
# This number is configured for the size of the QM9 dataset
parser.add_argument("--num_valid", default=12891, type=int,
help="Number of validation samples")
parser.add_argument("--batch_size", default=100, type=int,
help="Batch size used per training step")
parser.add_argument("--valid_batch_size", default=20, type=int,
help="Batch size used for going through validation_set")
parser.add_argument("--seed", default=np.random.randint(1000000), type=int,
help="Seed for splitting dataset into " + \
"training/validation/test")
parser.add_argument("--max_steps", default=10000, type=int,
help="Maximum number of training steps")
parser.add_argument("--learning_rate", default=0.001, type=float,
help="Learning rate used by the optimizer")
parser.add_argument("--decay_steps", default=1000, type=int,
help="Decay the learning rate every N steps by decay_rate")
parser.add_argument("--decay_rate", default=0.1, type=float,
help="Factor with which the learning rate gets " + \
"multiplied by every decay_steps steps")
parser.add_argument("--max_norm", default=1000.0, type=float,
help="Max norm for gradient clipping")
parser.add_argument("--ema_decay", default=0.999, type=float,
help="Exponential moving average decay used by the " + \
"trainer")
parser.add_argument("--rate", default=0.0, type=float,
help="Rate probability for dropout regularization of " + \
"rbf layer")
parser.add_argument("--l2lambda", default=0.0, type=float,
help="Lambda multiplier for l2 loss (regularization)")
#Note: This parameter is setup to 0.2 as it was the best value on the paper of Amini...
parser.add_argument("--lambda_conf", default=0.2, type=float,
help="Lambda value of the confidence of the prediction")
parser.add_argument('--summary_interval', default=5, type=int,
help="Write a summary every N steps")
parser.add_argument('--validation_interval', default=5, type=int,
help="Check performance on validation set every N steps")
parser.add_argument('--show_progress', default=True, type=bool,
help="Show progress of the epoch")
parser.add_argument('--save_interval', default=5, type=int,
help="Save progress every N steps")
parser.add_argument('--record_run_metadata', default=0, type=int,
help="Records metadata like memory consumption etc.")
parser.add_argument('--device',default='cuda',type=str,
help='Selects the device that will be used for training')
parser.add_argument('--DER_type',default=None,type=str,
help='Type of DER')
# ------------------------------------------------------------------------------
# Read Parameters and define output files
# ------------------------------------------------------------------------------
# Generate an (almost) unique id for the training session
def id_generator(size=8,
chars=(string.ascii_uppercase
+ string.ascii_lowercase
+ string.digits)):
return ''.join(random.SystemRandom().choice(chars) for _ in range(size))
# Read config file if no arguments are given
config_file = 'config.txt'
if len(sys.argv) == 1:
if os.path.isfile(config_file):
args = parser.parse_args(["@" + config_file])
else:
args = parser.parse_args(["--help"])
else:
args = parser.parse_args()
# Create output directory for training session and
# load config file arguments if restart
if args.restart == 'No':
directory = (
datetime.utcnow().strftime("%Y%m%d%H%M%S")
+ "_" + id_generator() + "_F" + str(args.num_features)
+ "K" + str(args.num_basis) + "b" + str(args.num_blocks)
+ "a" + str(args.num_residual_atomic)
+ "i" + str(args.num_residual_interaction)
+ "o" + str(args.num_residual_output) + "cut" + str(args.cutoff)
+ "e" + str(args.use_electrostatic) + "d" + str(args.use_dispersion)
+ "rate" + str(args.rate))
checkpoint_file = args.checkpoint_file
else:
directory = args.restart
args = parser.parse_args(["@" + os.path.join(args.restart, config_file)])
checkpoint_file = os.path.join(args.restart, args.checkpoint_file)
# Create sub directories
logging.info("Creating directories...")
if not os.path.exists(directory):
os.makedirs(directory)
best_dir = os.path.join(directory, 'best')
if not os.path.exists(best_dir):
os.makedirs(best_dir)
log_dir = os.path.join(directory, 'logs')
if not os.path.exists(log_dir):
os.makedirs(log_dir)
ckpt_dir = os.path.join(directory, 'ckpt')
if not os.path.exists(ckpt_dir):
os.makedirs(ckpt_dir)
# Define output files
best_loss_file = os.path.join(best_dir, 'best_loss.npz')
# Write config file of current training session
logging.info("Writing args to file...")
with open(os.path.join(directory, config_file), 'w') as f:
for arg in vars(args):
f.write('--' + arg + '=' + str(getattr(args, arg)) + "\n")
logging.info("device: {}".format(args.device))
# ------------------------------------------------------------------------------
# Define utility functions
# ------------------------------------------------------------------------------
def save_checkpoint(model, epoch, name_of_ckpt=None, best=False):
state = {'model_state_dict': model.state_dict(),
'epoch': epoch}
if best:
path = os.path.join(best_dir, 'best_model.pt')
else:
name = 'model' + str(name_of_ckpt) + '.pt'
path = os.path.join(ckpt_dir, name)
torch.save(state, path)
def load_checkpoint(path):
if path is not None:
checkpoint = torch.load(path)
return checkpoint
else:
return None
def printProgressBar(iteration, total, prefix='', suffix='', decimals=1, length=100, fill='#', printEnd="\r"):
"""
Call in a loop to create terminal progress bar
@params:
iteration - Required : current iteration (Int)
total - Required : total iterations (Int)
prefix - Optional : prefix string (Str)
suffix - Optional : suffix string (Str)
decimals - Optional : positive number of decimals in percent complete (Int)
length - Optional : character length of bar (Int)
fill - Optional : bar fill character (Str)
printEnd - Optional : end character (e.g. "\r", "\r\n") (Str)
"""
percent = ("{0:." + str(decimals) + "f}").format(
100 * (iteration / float(total)))
filledLength = int(length * iteration // total)
bar = fill * filledLength + '-' * (length - filledLength)
print("\r{0} |{1}| {2}% {3}".format(
prefix, bar, percent, suffix), end=printEnd)
# Print New Line on Complete
if iteration == total:
print()
def reset_averages(type,device='cpu'):
''' Reset counter and average values '''
null_float = torch.tensor(0.0, dtype=torch.float32,device=device)
if type == "train":
return null_float, null_float, null_float, null_float, null_float, \
null_float, null_float, null_float, null_float, null_float,null_float,null_float
elif type == "valid":
return null_float, null_float, null_float, null_float, null_float, \
null_float, null_float, null_float, null_float, null_float
def l2_regularizer(model,l2_lambda=args.l2lambda):
l2_norm = sum(p.pow(2.0).sum() for p in model.parameters())
return l2_lambda*l2_norm
#====================================
# Some functions
#====================================
def compute_pnorm(model):
"""Computes the norm of the parameters of a model."""
return np.sqrt(sum([p.norm().item() ** 2 for p in model.parameters()]))
def compute_gnorm(model):
"""Computes the norm of the gradients of a model."""
return np.sqrt(sum([p.grad.norm().item() ** 2 for p in model.parameters() if p.grad is not None]))
# ------------------------------------------------------------------------------
# Load data and initiate PhysNet model
# ------------------------------------------------------------------------------
# Load dataset
logging.info("Loading dataset...")
data = DataContainer(
args.dataset, args.num_train, args.num_valid,
args.batch_size, args.valid_batch_size, seed=args.seed)
# Initiate PhysNet model
logging.info("Creating PhysNet model...")
# Initiate summary writer
summary_writer = SummaryWriter(log_dir)
model = PhysNet(
F=args.num_features,
K=args.num_basis,
sr_cut=args.cutoff,
num_blocks=args.num_blocks,
num_residual_atomic=args.num_residual_atomic,
num_residual_interaction=args.num_residual_interaction,
num_residual_output=args.num_residual_output,
use_electrostatic=(args.use_electrostatic == 1),
use_dispersion=(args.use_dispersion == 1),
s6=args.grimme_s6,
s8=args.grimme_s8,
a1=args.grimme_a1,
a2=args.grimme_a2,
Eshift=data.EperA_m_n,
Escale=data.EperA_s_n,
activation_fn=shifted_softplus,
device=args.device,
writer=summary_writer)
if os.path.isfile(best_loss_file):
loss_file = np.load(best_loss_file)
best_loss = loss_file["loss"].item()
best_emae = loss_file["emae"].item()
best_ermse = loss_file["ermse"].item()
else:
best_loss = np.Inf
best_emae = np.Inf
best_ermse = np.Inf
best_epoch = 0.
np.savez(
best_loss_file, loss=best_loss, emae=best_emae, ermse=best_ermse,
epoch=best_epoch)
# Print model
DER_type = args.DER_type
if DER_type is None:
print('DER Type no especified, calculation will not be done')
exit()
else:
print('DER Type:{}'.format(DER_type))
#------------------------------------
# Loss function
#------------------------------------
def evid_loss_all(E_pred, v, alpha, beta, Q_pred, F_pred, D_pred,E_ref,Q_ref,F_ref,D_ref,
wf=52.9177, wq=14.3996, wd=27.2113,
lam=args.lambda_conf, epsilon=1e-4):
"""
Use Deep Evidential Regression negative log likelihood loss + evidential
regularizer
We will use the new version on the paper..
:mu: pred mean parameter for NIG
:v: pred lam parameter for NIG
:alpha: predicted parameter for NIG
:beta: Predicted parmaeter for NIG
:E: Energies predict
:F Forces predict
:return: Loss
"""
# Calculate NLL loss
twoBlambda = 2*beta*(1+v)
nll = 0.5*torch.log(np.pi/v) \
- alpha*torch.log(twoBlambda) \
+ (alpha+0.5) * torch.log(v*(E_ref-E_pred)**2 + twoBlambda) \
+ torch.lgamma(alpha) \
- torch.lgamma(alpha+0.5)
L_NLL = nll #torch.mean(nll, dim=-1)
# Calculate regularizer based on absolute error of prediction
error = torch.abs((E_ref - E_pred))
reg = error * (2 * v + alpha)
L_REG = reg #torch.mean(reg, dim=-1)
# Calculate error for the forces:
LF = nn.L1Loss(reduction="mean")
L_F = LF(F_ref, F_pred)
# Calculate error for the charges as L1
L_Q = LF(Q_ref, Q_pred)
# Calculate error for the dipole moments as L1
L_D = LF(D_ref, D_pred)
# Complete loss
loss = (L_NLL + lam * (L_REG - epsilon) + wf * L_F + wq * L_Q + wd * L_D
+ l2_regularizer(model))
return loss
def lipschitz_loss(mu, v, alpha, beta, targets):
lam_sqrt = torch.square(targets-mu)
u_nu = (beta*(v+1))/(alpha*v)
u_alpha = ((2*beta*(v+1))/v)*(torch.exp(torch.digamma(alpha+0.5)-torch.digamma(alpha))-1)
u_min = torch.min(u_nu,u_alpha).min()
delta = torch.abs(targets-mu)
c = 2*torch.sqrt(u_min)*delta - u_min
coeff = torch.clip(c,min=False,max=1.)
return coeff*lam_sqrt
def lipz_loss_all(E_pred,nu,alpha,beta,Q_pred,F_pred,D_pred,E_ref,Q_ref,F_ref,D_ref,
wf=52.9177, wq=14.3996, wd=27.2113,
lam=args.lambda_conf, epsilon=1e-4):
# This loss function calculates the loss for all properties of physnet and uses the
# DER loss function + a Lipschitz loss for the E prediction
# Calculate NLL loss
twoBlambda = 2 * beta * (1 + nu)
nll = 0.5 * torch.log(np.pi / nu) \
- alpha * torch.log(twoBlambda) \
+ (alpha + 0.5) * torch.log(nu * (E_ref - E_pred) ** 2 + twoBlambda) \
+ torch.lgamma(alpha) \
- torch.lgamma(alpha + 0.5)
L_NLL = nll # torch.mean(nll, dim=-1)
# Calculate regularizer based on absolute error of prediction
error = torch.abs((E_ref - E_pred))
reg = error * (2 * nu + alpha)
L_REG = reg # torch.mean(reg, dim=-1)
L_lipschitz_ener = lipschitz_loss(E_pred, nu, alpha, beta, E_ref)
L_DER = L_NLL + lam * (L_REG - epsilon) + L_lipschitz_ener
# Calculate error for the forces:
LF = nn.L1Loss(reduction="mean")
L_F = LF(F_ref, F_pred)
# Calculate error for the charges as L1
L_Q = LF(Q_ref,Q_pred)
# Calculate error for the dipole moments as L1
L_D = LF(D_ref,D_pred)
# Complete loss
loss = L_DER+ wf * L_F + wq * L_Q + wd * L_D + l2_regularizer(model)
return loss
def multidim_evid_loss(pred,E_ref,Q_ref,device='cpu'):
n = int(np.rint(-3.0 / 2.0 + np.sqrt(9.0 / 4.0 + 2.0 * (pred.shape[1] - 1.0))))
nu_idx = (n * (n + 3)) // 2
mu = pred[:, :n]
idx = torch.tril_indices(n, n)
L = torch.zeros(pred.shape[0], n, n, dtype=pred.dtype,device=device)
L[:, idx[0], idx[1]] = pred[:, n:nu_idx]
sigma = torch.matmul(L, L.transpose(1, 2))
nu = pred[:, nu_idx]
k = 1.0 + nu
new_y = torch.stack([E_ref,Q_ref],dim=1)
d = new_y - mu
ddT_over_k = torch.matmul(d.unsqueeze(2), d.unsqueeze(1)) / k.unsqueeze(1).unsqueeze(2)
if n == 2:
nrm = -torch.log(nu - 1)
else:
nrm = torch.lgamma((nu - n + 1.0) / 2.0) - torch.lgamma((nu + 1.0) / 2.0)
loss = ((nrm + n / 2.0 * torch.log(k)
- nu * torch.sum(torch.log(torch.diagonal(L, dim1=-2, dim2=-1)), dim=1))
+ (nu + 1) / 2.0 * torch.logdet(sigma + ddT_over_k))
return loss.mean()
def multidim_evid_loss_all(pred,D_pred,F_pred,E_ref,Q_ref,F_ref,D_ref,wf=52.9177,wd=27.2113,device='cpu'):
md_loss = multidim_evid_loss(pred,E_ref,Q_ref,device=device)
# Calculate error for the forces:
L = nn.L1Loss(reduction="mean")
L_F = L(F_ref,F_pred)
# Calculate error for the dipole moments:
LD = L(D_ref,D_pred)
total_loss = md_loss + wf*L_F + wd*LD
return total_loss
# ------------------------------------------------------------------------------
# Define training step
# ------------------------------------------------------------------------------
def get_indices(Nref,device='cpu'):
# Get indices pointing to batch image
# For some reason torch does not make repetition for float
batch_seg = torch.arange(0, Nref.size()[0],device=device).repeat_interleave(Nref.type(torch.int64))
# Initiate auxiliary parameter
Nref_tot = torch.tensor(0, dtype=torch.int32).to(device)
# Indices pointing to atom at each batch image
idx = torch.arange(end=Nref[0], dtype=torch.int32).to(device)
# Indices for atom pairs ij - Atom i
Ntmp = Nref.cpu()
idx_i = idx.repeat(int(Ntmp.numpy()[0]) - 1) + Nref_tot
# Indices for atom pairs ij - Atom j
idx_j = torch.roll(idx, -1, dims=0) + Nref_tot
for Na in torch.arange(2, Nref[0]):
Na_tmp = Na.cpu()
idx_j = torch.concat(
[idx_j, torch.roll(idx, int(-Na_tmp.numpy()), dims=0) + Nref_tot],
dim=0)
# Increment auxiliary parameter
Nref_tot = Nref_tot + Nref[0]
# Complete indices arrays
for Nref_a in Nref[1:]:
rng_a = torch.arange(end=Nref_a).to(device)
Nref_a_tmp = Nref_a.cpu()
idx = torch.concat([idx, rng_a], axis=0)
idx_i = torch.concat(
[idx_i, rng_a.repeat(int(Nref_a_tmp.numpy()) - 1) + Nref_tot],
dim=0)
for Na in torch.arange(1, Nref_a):
Na_tmp = Na.cpu()
idx_j = torch.concat(
[idx_j, torch.roll(rng_a, int(-Na_tmp.numpy()), dims=0) + Nref_tot],
dim=0)
# Increment auxiliary parameter
Nref_tot = Nref_tot + Nref_a
#Reorder the idx in i
idx_i = torch.sort(idx_i)[0]
# Combine indices for batch image and respective atoms
idx = torch.stack([batch_seg, idx], dim=1)
return idx.type(torch.int64), idx_i.type(torch.int64), idx_j.type(torch.int64), batch_seg.type(torch.int64)
def train_step(batch,num_t,loss_avg_t, emse_avg_t, emae_avg_t,
qmse_avg_t,qmae_avg_t,fmse_avg_t,fmae_avg_t,dmse_avg_t,dmae_avg_t,
pnorm,gnorm,device,maxnorm=1000):
model.train()
# lr_schedule = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer, factor=0.8, patience=2,
# min_lr=1e-4,verbose=True)
batch = [i.to(device) for i in batch]
N_t, Z_t, R_t, Eref_t, Earef_t, Fref_t, Qref_t, Qaref_t, Dref_t = batch
# Get indices
idx_t, idx_i_t, idx_j_t, batch_seg_t = get_indices(N_t,device=device)
# Gather data
Z_t = gather_nd(Z_t, idx_t)
R_t = gather_nd(R_t, idx_t)
if torch.count_nonzero(Earef_t) != 0:
Earef_t = gather_nd(Earef_t, idx_t)
if torch.count_nonzero(Fref_t) != 0:
Fref_t = gather_nd(Fref_t, idx_t)
if torch.count_nonzero(Qaref_t) != 0:
Qaref_t = gather_nd(Qaref_t, idx_t)
if DER_type == 'simple' or 'Lipz':
energy_t, nu_t_e, alpha_t_e, beta_t_e, Qa_t,forces_t = \
model.energy_forces_and_others_evidential(Z_t, R_t, idx_i_t, idx_j_t, Qref_t, batch_seg=batch_seg_t)
Qtot_t = segment_sum(Qa_t, batch_seg_t, device=device)
QR_t = torch.stack([Qa_t * R_t[:, 0], Qa_t * R_t[:, 1], Qa_t * R_t[:, 2]], 1)
D_t = segment_sum(QR_t, batch_seg_t, device=device)
# Calculate MAE and MSE
# Energy
mae_energy = torch.mean(torch.abs(energy_t - Eref_t))
mse_energy = torch.mean(torch.square(energy_t - Eref_t))
# Charge
mae_charges = torch.mean(torch.abs(Qtot_t - Qaref_t))
mse_charges = torch.mean(torch.square(Qtot_t - Qaref_t))
# Force
mae_forces = torch.mean(torch.abs(forces_t - Fref_t))
mse_forces = (torch.mean(torch.square(forces_t - Fref_t)))
# Dipole
mae_dipole = torch.mean(torch.abs(D_t - Dref_t))
mse_dipole = torch.mean(torch.square(D_t - Dref_t))
# Define the loss function
if DER_type == 'simple':
loss_t = evid_loss_all(energy_t, nu_t_e, alpha_t_e, beta_t_e, Qtot_t,
forces_t, D_t, Eref_t, Qref_t, Fref_t, Dref_t).sum()
elif DER_type == 'Lipz':
loss_t = lipz_loss_all(energy_t, nu_t_e, alpha_t_e, beta_t_e, Qtot_t,
forces_t, D_t, Eref_t, Qref_t, Fref_t, Dref_t).sum()
elif DER_type == 'MD':
pred, D_t, F_t = \
model.energy_and_forces_md_evidencial(Z_t, R_t, idx_i_t, idx_j_t, Qref_t, batch_seg=batch_seg_t)
# Calculate MAE and MSE for different properties
# Energy
mae_energy = torch.mean(torch.abs(pred[:, 0] - Eref_t))
mse_energy = torch.mean(torch.square(pred[:, 0] - Eref_t))
# Charges
mae_charges = torch.mean(torch.abs(pred[:, 1] - Qaref_t))
mse_charges = torch.mean(torch.square(pred[:, 1] - Qaref_t))
# Force
mae_forces = torch.mean(torch.abs(F_t - Fref_t))
mse_forces = (torch.mean(torch.square(F_t - Fref_t)))
# Dipole
mae_dipole = torch.mean(torch.abs(D_t - Dref_t))
mse_dipole = torch.mean(torch.square(D_t - Dref_t))
loss_t = multidim_evid_loss_all(pred, D_t, F_t, Eref_t, Qref_t, Fref_t, Dref_t, device=device)
else:
print('DER Type not recognized')
exit()
loss_t.backward(retain_graph=True)
# #Gradient clip
nn.utils.clip_grad_norm_(model.parameters(),maxnorm)
pnorm = pnorm + compute_pnorm(model)
gnorm = gnorm + compute_gnorm(model)
f = num_t /(num_t + N_t.dim())
loss_avg_t = f * loss_avg_t + (1.0 - f) * float(loss_t)
emse_avg_t = f * emse_avg_t + (1.0 - f) * float(mse_energy)
emae_avg_t = f * emae_avg_t + (1.0 - f) * float(mae_energy)
fmse_avg_t = f * fmse_avg_t + (1.0 - f) * float(mse_forces)
fmae_avg_t = f * fmae_avg_t + (1.0 - f) * float(mae_forces)
qmse_avg_t = f * qmse_avg_t + (1.0 - f) * float(mse_charges)
qmae_avg_t = f * qmae_avg_t + (1.0 - f) * float(mae_charges)
dmse_avg_t = f * dmse_avg_t + (1.0 - f) * float(mse_dipole)
dmae_avg_t = f * dmae_avg_t + (1.0 - f) * float(mae_dipole)
num_t = num_t + N_t.dim()
return num_t, loss_avg_t, emse_avg_t, emae_avg_t, fmse_avg_t, fmae_avg_t, \
qmse_avg_t, qmae_avg_t, dmse_avg_t, dmae_avg_t, pnorm,gnorm
def valid_step(batch,num_v,loss_avg_v, emse_avg_v, emae_avg_v,
qmse_avg_v,qmae_avg_v,fmse_avg_v,fmae_avg_v,dmse_avg_v,dmae_avg_v,device):
model.eval()
batch = [i.to(device) for i in batch]
N_v, Z_v, R_v, Eref_v, Earef_v, Fref_v, Qref_v, Qaref_v, Dref_v = batch
# Get indices
idx_v, idx_i_v, idx_j_v, batch_seg_v = get_indices(N_v,device=device)
Z_v = gather_nd(Z_v, idx_v)
R_v = gather_nd(R_v, idx_v)
if torch.count_nonzero(Earef_v) != 0:
Earef_v = gather_nd(Earef_v, idx_v)
if torch.count_nonzero(Fref_v) != 0:
Fref_v = gather_nd(Fref_v, idx_v)
if torch.count_nonzero(Qaref_v) != 0:
Qaref_v = gather_nd(Qaref_v, idx_v)
if DER_type == 'simple' or 'Lipz':
# Calculate energy, forces, and atomic properties
energy_v, nu_v_e, alpha_v_e, beta_v_e, Qa_v, forces_v = \
model.energy_forces_and_others_evidential(Z_v, R_v, idx_i_v, idx_j_v, Qref_v,
batch_seg=batch_seg_v)
Qtot_v = segment_sum(Qa_v, batch_seg_v, device=device)
QR_v = torch.stack([Qa_v * R_v[:, 0], Qa_v * R_v[:, 1], Qa_v * R_v[:, 2]], 1)
D_v = segment_sum(QR_v, batch_seg_v, device=device)
# Calculate MAE and MSE
# Energy
mae_energy = torch.mean(torch.abs(energy_v - Eref_v))
mse_energy = torch.mean(torch.square(energy_v - Eref_v))
# Charge
mae_charges = torch.mean(torch.abs(Qtot_v - Qaref_v))
mse_charges = torch.mean(torch.square(Qtot_v - Qaref_v))
# Force
mae_forces = torch.mean(torch.abs(forces_v - Fref_v))
mse_forces = (torch.mean(torch.square(forces_v - Fref_v)))
# Dipole
mae_dipole = torch.mean(torch.abs(D_v - Dref_v))
mse_dipole = torch.mean(torch.square(D_v - Dref_v))
if DER_type == 'simple':
loss_v = evid_loss_all(energy_v, nu_v_e, beta_v_e, Qtot_v,
forces_v, D_v, Eref_v, Qref_v, Fref_v, Dref_v).sum()
elif DER_type == 'Lipz':
loss_v = lipz_loss_all(energy_v, nu_v_e, alpha_v_e, beta_v_e, Qtot_v,
forces_v, D_v, Eref_v, Qref_v, Fref_v, Dref_v).sum()
else:
print('You should never reach this point')
exit()
elif DER_type == 'MD':
pred_V, D_v, F_v = \
model.energy_and_forces_md_evidencial(Z_v, R_v, idx_i_v, idx_j_v, Qref_v, batch_seg=batch_seg_v)
mae_energy = torch.mean(torch.abs(pred_V[:, 0] - Eref_v))
mse_energy = torch.mean(torch.square(pred_V[:, 0] - Eref_v))
mae_charges = torch.mean(torch.abs(pred_V[:, 1] - Qref_v))
mse_charges = torch.mean(torch.square(pred_V[:, 1] - Qref_v))
# Force
mae_forces = torch.mean(torch.abs(F_v - Fref_v))
mse_forces = (torch.mean(torch.square(F_v - Fref_v)))
# Dipole
mae_dipole = torch.mean(torch.abs(D_v - Dref_v))
mse_dipole = torch.mean(torch.square(D_v - Dref_v))
# loss
loss_v = multidim_evid_loss_all(pred_V, D_v, F_v, Eref_v, Qref_v, Fref_v, Dref_v, device=device)
else:
print('You should never reach this point')
exit()
f = num_v / (num_v + N_v.dim())
loss_avg_v = f * loss_avg_v + (1.0 - f) * float(loss_v)
emse_avg_v = f * emse_avg_v + (1.0 - f) * float(mse_energy)
emae_avg_v = f * emae_avg_v + (1.0 - f) * float(mae_energy)
fmse_avg_v = f * fmse_avg_v + (1.0 - f) * float(mse_forces)
fmae_avg_v = f * fmae_avg_v + (1.0 - f) * float(mae_forces)
qmse_avg_v = f * qmse_avg_v + (1.0 - f) * float(mse_charges)
qmae_avg_v = f * qmae_avg_v + (1.0 - f) * float(mae_charges)
dmse_avg_v = f * dmse_avg_v + (1.0 - f) * float(mse_dipole)
dmae_avg_v = f * dmae_avg_v + (1.0 - f) * float(mae_dipole)
num_v = num_v + N_v.dim()
return num_v, loss_avg_v, emse_avg_v, emae_avg_v, fmse_avg_v, fmae_avg_v, \
qmse_avg_v, qmae_avg_v, dmse_avg_v, dmae_avg_v
# ------------------------------------------------------------------------------
# Train PhysNet model
# ------------------------------------------------------------------------------
logging.info("starting training...")
# Define Optimizer
optimizer = torch.optim.Adam(params=model.parameters(), lr=args.learning_rate,
weight_decay=args.l2lambda,amsgrad=True)
lr_schedule = torch.optim.lr_scheduler.ExponentialLR(optimizer, gamma=np.power(args.decay_rate,1/args.decay_steps))
# Define Exponential Moving Average
ema = ExponentialMovingAverage(model.parameters(),decay=args.ema_decay)
# Initiate epoch and step counter
epoch = torch.tensor(1, requires_grad=False, dtype=torch.int64)
step = torch.tensor(1, requires_grad=False, dtype=torch.int64)
# Initiate checkpoints and load last checkpoint
latest_ckpt = load_checkpoint(checkpoint_file)
if latest_ckpt is not None:
model.load_state_dict(latest_ckpt['model_state_dict'])
optimizer.load_state_dict(latest_ckpt['optimizer_state_dict'])
epoch = latest_ckpt['epoch']
# Create validation batches
valid_batches = data.get_valid_batches()
# Initialize counter for estimated time per epoch
time_train_estimation = np.nan
time_train = 0.0
best_loss = np.Inf
# Training loop
# Terminate training when maximum number of iterations is reached
while epoch <= args.max_steps:
# Reset error averages
num_t, loss_avg_t, emse_avg_t, emae_avg_t, fmse_avg_t, fmae_avg_t, \
qmse_avg_t, qmae_avg_t, dmse_avg_t, dmae_avg_t, pnorm_t, gnorm_t = \
reset_averages("train",device=args.device)
# Create train batches
train_batches, N_train_batches = data.get_train_batches()
# Start train timer
train_start = time()
# Iterate over batches
for ib, batch in enumerate(train_batches):
optimizer.zero_grad()
# Start batch timer
batch_start = time()
# Show progress bar
if args.show_progress:
printProgressBar(
ib, N_train_batches, prefix="Epoch {0: 5d}".format(
epoch.numpy()),
suffix=("Complete - Remaining Epoch Time: "
+ "{0: 4.1f} s ".format(time_train_estimation)),
length=42)
# Training step
num_t, loss_avg_t, emse_avg_t, emae_avg_t, fmse_avg_t, fmae_avg_t, \
qmse_avg_t, qmae_avg_t, dmse_avg_t, dmae_avg_t, pnorm_t, gnorm_t = \
train_step(batch,num_t, loss_avg_t, emse_avg_t, emae_avg_t, fmse_avg_t, fmae_avg_t, \
qmse_avg_t, qmae_avg_t, dmse_avg_t, dmae_avg_t, pnorm_t,gnorm_t,args.device)
optimizer.step()
ema.update()
# Stop batch timer
batch_end = time()
# Actualize time estimation
if args.show_progress:
if ib == 0:
time_train_estimation = (
(batch_end - batch_start) * (N_train_batches - 1))
else:
time_train_estimation = (
0.5 * (time_train_estimation - (batch_end - batch_start))
+ 0.5 * (batch_end - batch_start) * (N_train_batches - ib - 1))
# Increment step number
step = step + 1
# Stop train timer
train_end = time()
time_train = train_end - train_start
# Show final progress bar and time
if args.show_progress:
loss_ev_t_temp = loss_avg_t.detach().cpu()
lat = float(loss_ev_t_temp.numpy())
printProgressBar(
N_train_batches, N_train_batches, prefix="Epoch {0: 5d}".format(
epoch.numpy()),
suffix=("Done - Epoch Time: "
+ "{0: 4.1f} s, Average Loss: {1: 4.4f} ".format(
time_train, lat))) # length=42))
# Save progress
if (epoch % args.save_interval == 0):
number_of_ckpt = int(epoch / args.save_interval)
save_checkpoint(model=model, epoch=epoch, name_of_ckpt=number_of_ckpt)
# Check performance on the validation set
if (epoch % args.validation_interval) == 0:
# Update training results
results_t = {}
loss_ev_t_temp = loss_avg_t.detach().cpu()
results_t["loss_train"] = loss_ev_t_temp.numpy()
results_t["time_train"] = time_train
results_t["norm_parm"] = pnorm_t
results_t["norm_grad"] = gnorm_t
if data.include_E:
emae_t_temp = emae_avg_t.detach().cpu()
emse_t_temp = emse_avg_t.detach().cpu()
results_t["energy_mae_train"] = emae_t_temp.numpy()
results_t["energy_rmse_train"] = np.sqrt(emse_t_temp.numpy())
if data.include_F:
fmae_t_temp = fmae_avg_t.detach().cpu()
fmse_t_temp = fmse_avg_t.detach().cpu()
results_t["force_mae_train"] = fmae_t_temp.numpy()
results_t["force_rmse_train"] = np.sqrt(fmse_t_temp.numpy())
if data.include_Q:
qmae_avg_t_temp = qmae_avg_t.detach().cpu().numpy()
qmse_avg_t_temp = qmse_avg_t.detach().cpu().numpy()
results_t["charge_mae_train"] = qmae_avg_t_temp
results_t["charge_rmse_train"] = np.sqrt(qmse_avg_t_temp)
if data.include_D:
dmae_avg_t_temp = dmae_avg_t.detach().cpu().numpy()
dmse_avg_t_temp = dmse_avg_t.detach().cpu().numpy()
results_t["dipole_mae_train"] = dmae_avg_t_temp
results_t["dipole_rmse_train"] = np.sqrt(dmse_avg_t_temp)
# Write Results to tensorboard
for key, value in results_t.items():
summary_writer.add_scalar(key, value, global_step=epoch)
# # Backup variables and assign EMA variables
# backup_vars = [tf.identity(var) for var in model.trainable_variables]
# for var in model.trainable_variables:
# var.assign(ema.average(var))
# Reset error averages
num_v, loss_avg_v, emse_avg_v, emae_avg_v, fmse_avg_v, fmae_avg_v, \
qmse_avg_v, qmae_avg_v, dmse_avg_v, dmae_avg_v = reset_averages('valid',device=args.device)
# Start valid timer
valid_start = time()
for ib, batch in enumerate(valid_batches):
num_v, loss_avg_v, emse_avg_v, emae_avg_v, fmse_avg_v, fmae_avg_v, \
qmse_avg_v, qmae_avg_v, dmse_avg_v, dmae_avg_v =\
valid_step(batch, num_v, loss_avg_v, emse_avg_v, emae_avg_v, fmse_avg_v, fmae_avg_v,
qmse_avg_v, qmae_avg_v, dmse_avg_v, dmae_avg_v,device=args.device)
# Stop valid timer
valid_end = time()
time_valid = valid_end - valid_start
# Update validation results
results_v = {}
loss_avg_v_temp = loss_avg_v.detach().cpu()
results_v["loss_valid"] = loss_avg_v_temp.numpy()
results_v["time_valid"] = time_valid
if data.include_E:
emae_v_temp = emae_avg_v.detach().cpu()
emse_v_temp = emse_avg_v.detach().cpu()
results_v["energy_mae_valid"] = emae_v_temp.numpy()
results_v["energy_rmse_valid"] = np.sqrt(emse_v_temp)
if data.include_F:
fmae_v_temp = fmae_avg_v.detach().cpu()
fmse_v_temp = fmse_avg_v.detach().cpu()
results_v["force_mae_valid"] = fmae_v_temp.numpy()
results_v["force_rmse_valid"] = np.sqrt(fmse_v_temp)
if data.include_Q:
qmae_avg_v_temp = qmae_avg_v.detach().cpu().numpy()
qmse_avg_v_temp = qmse_avg_v.detach().cpu().numpy()
results_v["charge_mae_valid"] = qmae_avg_v_temp
results_v["charge_rmse_valid"] = np.sqrt(qmse_avg_v_temp)
if data.include_D:
dmae_avg_v_temp = dmae_avg_v.detach().cpu().numpy()
dmse_avg_v_temp = dmse_avg_v.detach().cpu().numpy()
results_v["dipole_mae_valid"] = dmae_avg_v_temp
results_v["dipole_rmse_valid"] = np.sqrt(dmse_avg_v_temp)
for key, value in results_v.items():
summary_writer.add_scalar(key, value, global_step=epoch)
if results_v["loss_valid"] < best_loss:
# Assign results of best validation
best_loss = results_v["loss_valid"]
if data.include_E:
best_emae = results_v["energy_mae_valid"]
best_ermse = results_v["energy_rmse_valid"]
else:
best_emae = np.Inf
best_ermse = np.Inf
if data.include_F and data.include_E:
best_fmae = results_v["force_mae_valid"]
best_frmse = results_v["force_rmse_valid"]
else:
best_frmse = np.Inf
best_fmae = np.Inf
if data.include_Q:
best_qmae = results_v["charge_mae_valid"]
best_qrmse = results_v["charge_rmse_valid"]
else:
best_qmae = np.Inf
best_qrmse = np.Inf
if data.include_D:
best_dmae = results_v["dipole_mae_valid"]
best_drmse = results_v["dipole_rmse_valid"]
else:
best_dmae = np.Inf
best_drmse = np.Inf
best_epoch = epoch.numpy()
# Save best results
np.savez(
best_loss_file, loss=best_loss,
emae=best_emae, ermse=best_ermse,
fmae=best_fmae, frmse=best_frmse,
epoch=best_epoch)
# Save best model variables
save_checkpoint(model=model, epoch=epoch, best=True)
# Update best results
results_b = {}
results_b["loss_best"] = best_loss
if data.include_E:
results_b["energy_mae_best"] = best_emae
results_b["energy_rmse_best"] = best_ermse
if data.include_F:
results_b["force_mae_best"] = best_fmae
results_b["force_rmse_best"] = best_frmse
if data.include_Q:
results_b["charge_mae_best"] = best_qmae
results_b["charge_rmse_best"] = best_qrmse
if data.include_D:
results_b["dipole_mae_best"] = best_dmae
results_b["dipole_rmse_best"] = best_drmse
# Write the results to tensorboard
for key, value in results_b.items():
summary_writer.add_scalar(key, value, global_step=epoch)
# for var, bck in zip(model.trainable_variables, backup_vars):
# var.assign(bck)
#Generate summaries
if ((epoch % args.summary_interval == 0)
and (epoch >= args.validation_interval)):
if data.include_E:
print(
"Summary Epoch: " + \
str(epoch.numpy()) + '/' + str(args.max_steps),
"\n Loss train/valid: {0: 1.3e}/{1: 1.3e}, ".format(
results_t["loss_train"],
results_v["loss_valid"]),
" Best valid loss: {0: 1.3e}, ".format(
results_b["loss_best"]),
"\n MAE(E) train/valid: {0: 1.3e}/{1: 1.3e}, ".format(
results_t["energy_mae_train"],
results_v["energy_mae_valid"]),
" Best valid MAE(E): {0: 1.3e}, ".format(
results_b["energy_mae_best"]))
# Increment epoch number
lr_schedule.step()
epoch += 1