-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathapp.py
46 lines (39 loc) · 1.41 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
import numpy as np
from PIL import Image
from feature_extractor import FeatureExtractor
from datetime import datetime
from flask import Flask, request, render_template
from pathlib import Path
app = Flask(__name__)
# Read image features
fe = FeatureExtractor()
features = []
img_paths = []
for feature_path in Path("./static/feature").glob("*.npy"):
features.append(np.load(feature_path))
img_paths.append(Path("./static/img") / (feature_path.stem + ".jpg"))
features = np.array(features)
@app.route('/', methods=['GET', 'POST'])
def index():
if request.method == 'POST':
# Get the query image
file = request.files['query_img']
# Save query image to "static/uploaded/"
img = Image.open(file.stream) # PIL image
uploaded_img_path = "static/uploaded/" + datetime.now().isoformat().replace(":", ".") + "_" + file.filename
img.save(uploaded_img_path)
# Run search
query = fe.extract(img)
dists = np.linalg.norm(features-query, axis = 1) # L2 distances to features
ids = np.argsort(dists)[:10] # Top 30 results
scores = [(dists[id], img_paths[id]) for id in ids]
# Render the search results
return render_template(
'index.html',
query_path = uploaded_img_path,
scores = scores
)
else:
return render_template('index.html')
if __name__=="__main__":
app.run("0.0.0.0")