-
Notifications
You must be signed in to change notification settings - Fork 26
/
Copy pathmodel.py
238 lines (203 loc) · 11.6 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
from __future__ import division
import os
from os import listdir
from os.path import isfile, join
import time
import tensorflow as tf
import numpy as np
import sys
from scipy.misc import imresize
import functools
import vgg19.vgg as vgg
from utils import *
import netdef
STROKE_SHORTCUT_DICT = {"768": [False, False], "512": [False, True], "256": [True, False], "interp": [True, True]}
STYLE_LAYERS = ('conv1_1', 'conv2_1', 'conv3_1', 'conv4_1', 'conv5_1')
CONTENT_LAYERS = ('conv4_2')
DEFAULT_RESOLUTIONS = ((768, 768), (512, 512), (256, 256))
class DataLoader(object):
def __init__(self, args):
file_names = [join(args.train_path, f) for f in listdir(args.train_path) if isfile(join(args.train_path, f)) and ".jpg" in f]
self.mscoco_fnames = file_names
self.train_size = len(file_names)
self.batch_size = args.batch_size
self.epochs = 0
self.nbatches = int(self.train_size / args.batch_size)
self.batch_idx = 0
self.perm = np.random.permutation(self.train_size)
print ("[*] Training dataset size: {}".format(self.train_size))
print ("[*] Batch size: {}".format(self.batch_size))
print ("[*] {} #Batches per epoch".format(self.nbatches))
def fill_feed_dict(self, content_pl, img_size=None):
content_images = np.zeros((self.batch_size,) + img_size, dtype=np.float32)
for i in xrange(self.batch_size):
img = np.array(load_image(self.mscoco_fnames[self.perm[self.batch_idx * self.batch_size + i]], shape=img_size), dtype=np.float32)
content_images[i] = img
self.batch_idx += 1
if self.batch_idx == self.nbatches:
self.batch_idx = 0
self.epochs += 1
self.perm = np.random.permutation(self.train_size)
return {content_pl: content_images}
class Model(object):
def __init__(self, sess, args):
self.sess = sess
self.batch_size = args.batch_size
self._build_model(args)
self.saver = tf.train.Saver(max_to_keep=None)
self.data_loader = DataLoader(args)
def _build_model(self, args):
# center-crop loading style image
# change this the following two lines to load original style image
style_highres_img = load_image(args.style, shape=DEFAULT_RESOLUTIONS[1])
self.style_targets = [np.array(style_highres_img.resize((shape[0], shape[1]), resample=Image.BILINEAR), dtype=np.float32)
for shape in DEFAULT_RESOLUTIONS]
self.content_input = tf.placeholder(tf.float32, shape=(args.batch_size, None, None, 3), name='content_input')
self.shortcut = tf.placeholder_with_default([False, False], shape=[2], name="shortcut")
self.interpolation_factor = tf.placeholder_with_default(0.0, shape=[], name="interpolation_factor")
# precompute style features
self.style_features_pyramid = []
with tf.name_scope("pre-style-features"), tf.Session() as sess:
style_image = tf.placeholder(tf.float32, shape=(1, None, None, 3), name='precompute_style')
style_image_pre = vgg.preprocess(vgg.rgb2bgr(style_image))
net = vgg.Vgg19()
net.build(style_image_pre)
for style_target in self.style_targets:
style_target = np.expand_dims(style_target, 0)
style_features = {}
for layer in STYLE_LAYERS:
fv = sess.run(net.net[layer], feed_dict={style_image: style_target})
fv = np.reshape(fv, (-1, fv.shape[3]))
gram = np.matmul(fv.T, fv) / fv.size
style_features[layer] = gram
self.style_features_pyramid.append(style_features)
# Content Loss and Style Loss
content_bgr = vgg.rgb2bgr(self.content_input)
content_pre = vgg.preprocess(content_bgr)
content_net = vgg.Vgg19()
content_net.build(content_pre)
content_fv = content_net.net[CONTENT_LAYERS]
self.preds = netdef.shortcut_interpolation(self.content_input / 255., self.shortcut, self.interpolation_factor)
preds_bgr = vgg.rgb2bgr(self.preds)
preds_pre = vgg.preprocess(preds_bgr)
net = vgg.Vgg19()
net.build(preds_pre)
preds_content_fv = net.net[CONTENT_LAYERS]
self.content_loss = args.content_weight * (2 * tf.nn.l2_loss(
preds_content_fv - content_fv) / (tf.to_float(tf.size(content_fv)) * args.batch_size)
)
self.style_losses = []
for style_layer in STYLE_LAYERS:
fv = net.net[style_layer]
bs, height, width, filters = tf.shape(fv)[0], tf.shape(fv)[1], tf.shape(fv)[2], tf.shape(fv)[3]
size = height * width * filters
feats = tf.reshape(fv, (bs, height * width, filters))
feats_T = tf.transpose(feats, perm=[0, 2, 1])
grams = tf.matmul(feats_T, feats) / tf.to_float(size)
style_gram = tf.to_float(tf.cond(self.shortcut[0],
lambda: self.style_features_pyramid[2][style_layer],
lambda: tf.cond(self.shortcut[1],
lambda: self.style_features_pyramid[1][style_layer],
lambda: self.style_features_pyramid[0][style_layer]
)
))
self.style_losses.append(args.style_weight * (2 * tf.nn.l2_loss(grams - style_gram) / tf.to_float(tf.size(style_gram))) / args.batch_size)
self.style_loss = functools.reduce(tf.add, self.style_losses)
# Total Variational Loss
tv_y_size = tf.to_float(tf.size(self.preds[:, 1:, :, :]))
tv_x_size = tf.to_float(tf.size(self.preds[:, :, 1:, :]))
y_tv = tf.nn.l2_loss(self.preds[:, 1:, :, :] - self.preds[:, :-1, :, :])
x_tv = tf.nn.l2_loss(self.preds[:, :, 1:, :] - self.preds[:, :, :-1, :])
self.tv_loss = 2 * args.tv_weight * (x_tv / tv_x_size + y_tv / tv_y_size) / args.batch_size
self.loss = tf.add_n([self.content_loss, self.style_loss, self.tv_loss], name="loss")
def train(self, args):
self.optimizer = tf.train.AdamOptimizer(args.learning_rate).minimize(self.loss)
self.sess.run(tf.global_variables_initializer())
for iter_count in xrange(1, int(args.max_iter) + 1):
feed_dict = self.data_loader.fill_feed_dict(
self.content_input,
img_size=DEFAULT_RESOLUTIONS[1] + (3,)
)
feed_dict[self.shortcut] = [iter_count % 3 == 2, iter_count % 3 == 1]
feed_dict[self.interpolation_factor] = 0.0
_, content_loss, tv_loss, total_loss, style_losses_list = self.sess.run([
self.optimizer,
self.content_loss,
self.tv_loss,
self.loss,
self.style_losses
], feed_dict=feed_dict)
if iter_count % args.iter_print == 0 and iter_count != 0:
print ('Iteration {} / {}\n\tContent loss: {}'.format(iter_count, args.max_iter, content_loss))
for idx, sloss in enumerate(style_losses_list):
print ('\tStyle {} loss: {}'.format(idx, sloss))
print ('\tTV loss: {}'.format(tv_loss))
print ('\tTotal loss: {}'.format(total_loss))
if iter_count % args.checkpoint_iterations == 0 and iter_count != 0:
self.save(args.checkpoint_dir, iter_count)
self.save_sample_train(args, join(args.serial, "out_{}_768px.jpg".format(iter_count)), shortcut=STROKE_SHORTCUT_DICT["768"])
self.save_sample_train(args, join(args.serial, "out_{}_512px.jpg".format(iter_count)), shortcut=STROKE_SHORTCUT_DICT["512"])
self.save_sample_train(args, join(args.serial, "out_{}_256px.jpg".format(iter_count)), shortcut=STROKE_SHORTCUT_DICT["256"])
# ...
def finetune_model(self, args):
self.optimizer = tf.train.AdamOptimizer(args.learning_rate).minimize(self.loss)
self.sess.run(tf.global_variables_initializer())
start_step = 0
if self.load(args.checkpoint_dir):
print "[*] Success load the checkpoint {}, continue to train.".format(args.checkpoint_dir)
checkpoint_names = [f for f in os.listdir(args.checkpoint_dir) if ".meta" in f]
checkpoint_nums = [int(''.join(x for x in r if x.isdigit())) for r in checkpoint_names]
start_step = max(checkpoint_nums) + 1
else:
print "[!] Error in loading checkpoint"
return
for iter_count in xrange(start_step, int(args.max_iter) + start_step + 1):
feed_dict = self.data_loader.fill_feed_dict(
self.content_input,
img_size=DEFAULT_RESOLUTIONS[1] + (3,)
)
feed_dict[self.shortcut] = [iter_count % 3 == 2, iter_count % 3 == 1]
feed_dict[self.interpolation_factor] = 0.0
_, content_loss, tv_loss, total_loss, style_losses_list = self.sess.run([
self.optimizer,
self.content_loss,
self.tv_loss,
self.loss,
self.style_losses
], feed_dict=feed_dict)
if iter_count % args.iter_print == 0 and iter_count != 0:
print ('Iteration {} / {}\n\tContent loss: {}'.format(iter_count, int(args.max_iter) + start_step, content_loss))
for idx, sloss in enumerate(style_losses_list):
print ('\tStyle {} loss: {}'.format(idx, sloss))
print ('\tTV loss: {}'.format(tv_loss))
print ('\tTotal loss: {}'.format(total_loss))
if iter_count % args.checkpoint_iterations == 0 and iter_count != 0:
self.save(args.checkpoint_dir, iter_count)
self.save_sample_train(args, join(args.serial, "out_{}_768px.jpg".format(iter_count)), shortcut=STROKE_SHORTCUT_DICT["768"])
self.save_sample_train(args, join(args.serial, "out_{}_512px.jpg".format(iter_count)), shortcut=STROKE_SHORTCUT_DICT["512"])
self.save_sample_train(args, join(args.serial, "out_{}_256px.jpg".format(iter_count)), shortcut=STROKE_SHORTCUT_DICT["256"])
def load(self, checkpoint_dir):
print (" [*] Reading checkpoint...")
ckpt = tf.train.get_checkpoint_state(checkpoint_dir)
if ckpt and ckpt.model_checkpoint_path:
ckpt_name = os.path.basename(ckpt.model_checkpoint_path)
self.saver.restore(self.sess, os.path.join(checkpoint_dir, ckpt_name))
return True
else:
try:
self.saver.restore(self.sess, checkpoint_dir)
return True
except:
return False
def save(self, checkpoint_dir, step):
self.saver.save(self.sess, os.path.join(checkpoint_dir, 'model'), global_step=step)
def save_sample_train(self, args, output_path, shortcut):
img = np.array(load_image(args.sample_path, 1024), dtype=np.float32)
border = np.ceil(np.shape(img)[0]/20/4).astype(int) * 5
#container = np.ones((args.batch_size, np.shape(img)[0] + 2 * border, np.shape(img)[1] + 2 * border, 3), dtype=np.float32)
container = [imresize(img, (np.shape(img)[0] + 2 * border, np.shape(img)[1] + 2 * border, 3))]
container[0][border : np.shape(img)[0] + border, border : np.shape(img)[1] + border, :] = img
container = np.repeat(container, args.batch_size, 0)
preds = self.sess.run(self.preds, feed_dict={self.content_input: container, self.shortcut: shortcut, self.interpolation_factor: 0.0})
save_image(output_path, np.squeeze(preds[0][border : np.shape(img)[0] + border, border : np.shape(img)[1] + border, :]))
print ("[*] Save to {}".format(output_path))