Skip to content

Latest commit

 

History

History
316 lines (294 loc) · 11.6 KB

README.md

File metadata and controls

316 lines (294 loc) · 11.6 KB

⏱ pytorch-benchmark

Easily benchmark model inference FLOPs, latency, throughput, max allocated memory and energy consumption

*Actual coverage is higher as GPU-related code is skipped by Codecov

Install

pip install pytorch-benchmark

Usage

import torch
from torchvision.models import efficientnet_b0
from pytorch_benchmark import benchmark


model = efficientnet_b0().to("cpu")  # Model device sets benchmarking device
sample = torch.randn(8, 3, 224, 224)  # (B, C, H, W)
results = benchmark(model, sample, num_runs=100)

Sample results 💻

Macbook Pro (16-inch, 2019), 2.6 GHz 6-Core Intel Core i7
device: cpu
flops: 401669732
machine_info:
  cpu:
    architecture: x86_64
    cores:
      physical: 6
      total: 12
    frequency: 2.60 GHz
    model: Intel(R) Core(TM) i7-9750H CPU @ 2.60GHz
  gpus: null
  memory:
    available: 5.86 GB
    total: 16.00 GB
    used: 7.29 GB
  system:
    node: d40049
    release: 21.2.0
    system: Darwin
params: 5288548
timing:
  batch_size_1:
    on_device_inference:
      human_readable:
        batch_latency: 74.439 ms +/- 6.459 ms [64.604 ms, 96.681 ms]
        batches_per_second: 13.53 +/- 1.09 [10.34, 15.48]
      metrics:
        batches_per_second_max: 15.478907181264278
        batches_per_second_mean: 13.528026359855625
        batches_per_second_min: 10.343281300091244
        batches_per_second_std: 1.0922382209314958
        seconds_per_batch_max: 0.09668111801147461
        seconds_per_batch_mean: 0.07443853378295899
        seconds_per_batch_min: 0.06460404396057129
        seconds_per_batch_std: 0.006458734193132054
  batch_size_8:
    on_device_inference:
      human_readable:
        batch_latency: 509.410 ms +/- 30.031 ms [405.296 ms, 621.773 ms]
        batches_per_second: 1.97 +/- 0.11 [1.61, 2.47]
      metrics:
        batches_per_second_max: 2.4673319862230025
        batches_per_second_mean: 1.9696935126370148
        batches_per_second_min: 1.6083039834656554
        batches_per_second_std: 0.11341204895590185
        seconds_per_batch_max: 0.6217730045318604
        seconds_per_batch_mean: 0.509410228729248
        seconds_per_batch_min: 0.40529608726501465
        seconds_per_batch_std: 0.030031445467788704
Server with NVIDIA GeForce RTX 2080 and Intel Xeon 2.10GHz CPU
device: cuda
flops: 401669732
machine_info:
  cpu:
    architecture: x86_64
    cores:
      physical: 16
      total: 32
    frequency: 3.00 GHz
    model: Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz
  gpus:
  - memory: 8192.0 MB
    name: NVIDIA GeForce RTX 2080
  - memory: 8192.0 MB
    name: NVIDIA GeForce RTX 2080
  - memory: 8192.0 MB
    name: NVIDIA GeForce RTX 2080
  - memory: 8192.0 MB
    name: NVIDIA GeForce RTX 2080
  memory:
    available: 119.98 GB
    total: 125.78 GB
    used: 4.78 GB
  system:
    node: monster
    release: 4.15.0-167-generic
    system: Linux
max_inference_memory: 736250368
params: 5288548
post_inference_memory: 21402112
pre_inference_memory: 21402112
timing:
  batch_size_1:
    cpu_to_gpu:
      human_readable:
        batch_latency: "144.815 \xB5s +/- 16.103 \xB5s [136.614 \xB5s, 272.751 \xB5\
          s]"
        batches_per_second: 6.96 K +/- 535.06 [3.67 K, 7.32 K]
      metrics:
        batches_per_second_max: 7319.902268760908
        batches_per_second_mean: 6962.865857677197
        batches_per_second_min: 3666.3496503496503
        batches_per_second_std: 535.0581873859935
        seconds_per_batch_max: 0.0002727508544921875
        seconds_per_batch_mean: 0.00014481544494628906
        seconds_per_batch_min: 0.0001366138458251953
        seconds_per_batch_std: 1.6102982159292097e-05
    gpu_to_cpu:
      human_readable:
        batch_latency: "106.168 \xB5s +/- 17.829 \xB5s [53.167 \xB5s, 248.909 \xB5\
          s]"
        batches_per_second: 9.64 K +/- 1.60 K [4.02 K, 18.81 K]
      metrics:
        batches_per_second_max: 18808.538116591928
        batches_per_second_mean: 9639.942102368092
        batches_per_second_min: 4017.532567049808
        batches_per_second_std: 1595.7983033708472
        seconds_per_batch_max: 0.00024890899658203125
        seconds_per_batch_mean: 0.00010616779327392578
        seconds_per_batch_min: 5.316734313964844e-05
        seconds_per_batch_std: 1.7829135190772566e-05
    on_device_inference:
      human_readable:
        batch_latency: "15.567 ms +/- 546.154 \xB5s [15.311 ms, 19.261 ms]"
        batches_per_second: 64.31 +/- 1.96 [51.92, 65.31]
      metrics:
        batches_per_second_max: 65.31149174711928
        batches_per_second_mean: 64.30692850265713
        batches_per_second_min: 51.918698784442846
        batches_per_second_std: 1.9599322351815833
        seconds_per_batch_max: 0.019260883331298828
        seconds_per_batch_mean: 0.015567030906677246
        seconds_per_batch_min: 0.015311241149902344
        seconds_per_batch_std: 0.0005461537255227954
    total:
      human_readable:
        batch_latency: "15.818 ms +/- 549.873 \xB5s [15.561 ms, 19.461 ms]"
        batches_per_second: 63.29 +/- 1.92 [51.38, 64.26]
      metrics:
        batches_per_second_max: 64.26476266356143
        batches_per_second_mean: 63.28565696640637
        batches_per_second_min: 51.38378232692614
        batches_per_second_std: 1.9198343850767468
        seconds_per_batch_max: 0.019461393356323242
        seconds_per_batch_mean: 0.01581801414489746
        seconds_per_batch_min: 0.015560626983642578
        seconds_per_batch_std: 0.0005498731526138171
  batch_size_8:
    cpu_to_gpu:
      human_readable:
        batch_latency: "805.674 \xB5s +/- 157.254 \xB5s [773.191 \xB5s, 2.303 ms]"
        batches_per_second: 1.26 K +/- 97.51 [434.24, 1.29 K]
      metrics:
        batches_per_second_max: 1293.3407338883749
        batches_per_second_mean: 1259.5653105357776
        batches_per_second_min: 434.23791282741485
        batches_per_second_std: 97.51424036939879
        seconds_per_batch_max: 0.002302885055541992
        seconds_per_batch_mean: 0.000805673599243164
        seconds_per_batch_min: 0.0007731914520263672
        seconds_per_batch_std: 0.0001572538140613121
    gpu_to_cpu:
      human_readable:
        batch_latency: "104.215 \xB5s +/- 12.658 \xB5s [59.605 \xB5s, 128.031 \xB5\
          s]"
        batches_per_second: 9.81 K +/- 1.76 K [7.81 K, 16.78 K]
      metrics:
        batches_per_second_max: 16777.216
        batches_per_second_mean: 9806.840626578907
        batches_per_second_min: 7810.621973929236
        batches_per_second_std: 1761.6008872740726
        seconds_per_batch_max: 0.00012803077697753906
        seconds_per_batch_mean: 0.00010421514511108399
        seconds_per_batch_min: 5.9604644775390625e-05
        seconds_per_batch_std: 1.2658293070174213e-05
    on_device_inference:
      human_readable:
        batch_latency: "16.623 ms +/- 759.017 \xB5s [16.301 ms, 22.584 ms]"
        batches_per_second: 60.26 +/- 2.22 [44.28, 61.35]
      metrics:
        batches_per_second_max: 61.346243290283894
        batches_per_second_mean: 60.25881046175457
        batches_per_second_min: 44.27827629162004
        batches_per_second_std: 2.2193085956672296
        seconds_per_batch_max: 0.02258443832397461
        seconds_per_batch_mean: 0.01662288188934326
        seconds_per_batch_min: 0.01630091667175293
        seconds_per_batch_std: 0.0007590167680596548
    total:
      human_readable:
        batch_latency: "17.533 ms +/- 836.015 \xB5s [17.193 ms, 23.896 ms]"
        batches_per_second: 57.14 +/- 2.20 [41.85, 58.16]
      metrics:
        batches_per_second_max: 58.16374528511205
        batches_per_second_mean: 57.140338855126565
        batches_per_second_min: 41.84762740950632
        batches_per_second_std: 2.1985066663972677
        seconds_per_batch_max: 0.023896217346191406
        seconds_per_batch_mean: 0.01753277063369751
        seconds_per_batch_min: 0.017192840576171875
        seconds_per_batch_std: 0.0008360147274630088

... Your turn

How we benchmark

The overall flow can be summarized with the diagram shown below (best viewed on GitHub):

flowchart TB;
    A([Start]) --> B
    B(prepare_samples)
    B --> C[get_machine_info]
    C --> D[measure_params]
    D --> E[warm_up, batch_size=1]
    E --> F[measure_flops]
    
    subgraph SG[Repeat for batch_size 1 and x]
        direction TB
        G[measure_allocated_memory]
        G --> H[warm_up, given batch_size]
        H --> I[measure_detailed_inference_timing]
        I --> J[measure_repeated_inference_timing]
        J --> K[measure_energy]
    end

    F --> SG
    SG --> END([End])
Loading

Usually, the sample and model don't reside on the same device initially (e.g., a GPU holds the model while the sample is on CPU after being loaded from disk or collected as live data). Accordingly, we measure timing in three parts: cpu_to_gpu, on_device_inference, and gpu_to_cpu, as well as a sum of the three, total. Note that the model.device() determines the execution device. The inference flow is shown below:

flowchart LR;
    A([sample])
    A --> B[cpu -> gpu]
    B --> C[model __call__]
    C --> D[gpu -> cpu]
    D --> E([result])
Loading

Advanced use

Trying to benchmark a custom class, which is not a torch.nn.Module? You can pass custom functions to benchmark as seen in this example.

Limitations

  • Allocated memory measurements are only available on CUDA devices.
  • Energy consumption can only be measured on NVIDIA Jetson platforms at the moment.
  • FLOPs and parameter count is not support for custom classes.

Acknowledgement

This work has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 871449 (OpenDR). It was developed for benchmarking tools in OpenDR, a non-proprietary toolkit for deep learning based functionalities for robotics and vision.

Citation

If you like the tool and use it in research, please consider citing it:

@software{hedegaard2022pytorchbenchmark,
  author = {Hedegaard, Lukas},
  doi = {10.5281/zenodo.7223585},
  month = {10},
  title = {{PyTorch-Benchmark}},
  version = {0.3.5},
  year = {2022}
}