-
Notifications
You must be signed in to change notification settings - Fork 31
/
Copy pathval.py
141 lines (114 loc) · 4.47 KB
/
val.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
import os
import utils
import logging
import argparse
import importlib
import torch
import torch.distributed
import torch.distributed as dist
import torch.backends.cudnn as cudnn
from mmcv import Config
from mmcv.parallel import MMDataParallel, MMDistributedDataParallel
from mmcv.runner import load_checkpoint
from mmdet.apis import set_random_seed, multi_gpu_test, single_gpu_test
from mmdet3d.datasets import build_dataset, build_dataloader
from mmdet3d.models import build_model
from models.utils import VERSION
def evaluate(dataset, results, epoch):
metrics = dataset.evaluate(results, jsonfile_prefix='submission')
mAP = metrics['pts_bbox_NuScenes/mAP']
mATE = metrics['pts_bbox_NuScenes/mATE']
mASE = metrics['pts_bbox_NuScenes/mASE']
mAOE = metrics['pts_bbox_NuScenes/mAOE']
mAVE = metrics['pts_bbox_NuScenes/mAVE']
mAAE = metrics['pts_bbox_NuScenes/mAAE']
NDS = metrics['pts_bbox_NuScenes/NDS']
logging.info('--- Evaluation Results (Epoch %d) ---' % epoch)
logging.info('mAP: %.4f' % metrics['pts_bbox_NuScenes/mAP'])
logging.info('mATE: %.4f' % metrics['pts_bbox_NuScenes/mATE'])
logging.info('mASE: %.4f' % metrics['pts_bbox_NuScenes/mASE'])
logging.info('mAOE: %.4f' % metrics['pts_bbox_NuScenes/mAOE'])
logging.info('mAVE: %.4f' % metrics['pts_bbox_NuScenes/mAVE'])
logging.info('mAAE: %.4f' % metrics['pts_bbox_NuScenes/mAAE'])
logging.info('NDS: %.4f' % metrics['pts_bbox_NuScenes/NDS'])
return {
'mAP': mAP,
'mATE': mATE,
'mASE': mASE,
'mAOE': mAOE,
'mAVE': mAVE,
'mAAE': mAAE,
'NDS': NDS,
}
def main():
parser = argparse.ArgumentParser(description='Validate a detector')
parser.add_argument('--config', required=True)
parser.add_argument('--weights', required=True)
parser.add_argument('--local_rank', type=int, default=0)
parser.add_argument('--world_size', type=int, default=1)
parser.add_argument('--batch_size', type=int, default=1)
args = parser.parse_args()
# parse configs
cfgs = Config.fromfile(args.config)
# register custom module
importlib.import_module('models')
importlib.import_module('loaders')
# MMCV, please shut up
from mmcv.utils.logging import logger_initialized
logger_initialized['root'] = logging.Logger(__name__, logging.WARNING)
logger_initialized['mmcv'] = logging.Logger(__name__, logging.WARNING)
# you need GPUs
assert torch.cuda.is_available()
# determine local_rank and world_size
if 'LOCAL_RANK' not in os.environ:
os.environ['LOCAL_RANK'] = str(args.local_rank)
if 'WORLD_SIZE' not in os.environ:
os.environ['WORLD_SIZE'] = str(args.world_size)
local_rank = int(os.environ['LOCAL_RANK'])
world_size = int(os.environ['WORLD_SIZE'])
if local_rank == 0:
utils.init_logging(None, cfgs.debug)
else:
logging.root.disabled = True
logging.info('Using GPU: %s' % torch.cuda.get_device_name(local_rank))
torch.cuda.set_device(local_rank)
if world_size > 1:
logging.info('Initializing DDP with %d GPUs...' % world_size)
dist.init_process_group('nccl', init_method='env://')
logging.info('Setting random seed: 0')
set_random_seed(0, deterministic=True)
cudnn.benchmark = True
logging.info('Loading validation set from %s' % cfgs.data.val.data_root)
val_dataset = build_dataset(cfgs.data.val)
val_loader = build_dataloader(
val_dataset,
samples_per_gpu=args.batch_size,
workers_per_gpu=cfgs.data.workers_per_gpu,
num_gpus=world_size,
dist=world_size > 1,
shuffle=False,
seed=0,
)
logging.info('Creating model: %s' % cfgs.model.type)
model = build_model(cfgs.model)
model.cuda()
model.fp16_enabled = True
if world_size > 1:
model = MMDistributedDataParallel(model, [local_rank], broadcast_buffers=False)
else:
model = MMDataParallel(model, [0])
logging.info('Loading checkpoint from %s' % args.weights)
checkpoint = load_checkpoint(
model, args.weights, map_location='cuda', strict=True,
logger=logging.Logger(__name__, logging.ERROR)
)
if 'version' in checkpoint:
VERSION.name = checkpoint['version']
if world_size > 1:
results = multi_gpu_test(model, val_loader, gpu_collect=True)
else:
results = single_gpu_test(model, val_loader)
if local_rank == 0:
evaluate(val_dataset, results, -1)
if __name__ == '__main__':
main()