-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathcoco_eval.py
171 lines (128 loc) · 5.52 KB
/
coco_eval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
# Author: Zylo117
"""
COCO-Style Evaluations
put images here datasets/your_project_name/annotations/val_set_name/*.jpg
put annotations here datasets/your_project_name/annotations/instances_{val_set_name}.json
put weights here /path/to/your/weights/*.pth
change compound_coef
"""
import json
import os
import argparse
import torch
import yaml
from tqdm import tqdm
from pycocotools.coco import COCO
from pycocotools.cocoeval import COCOeval
from backbone import EfficientDetBackbone
from efficientdet.utils import BBoxTransform, ClipBoxes
from utils.utils import preprocess, invert_affine, postprocess
from efficientdet.vcoco_dataset import VCOCO_Dataset, Resizer, Normalizer, Augmenter, collater
ap = argparse.ArgumentParser()
ap.add_argument('-p', '--project', type=str, default='coco', help='project file that contains parameters')
ap.add_argument('-c', '--compound_coef', type=int, default=0, help='coefficients of efficientdet')
ap.add_argument('-w', '--weights', type=str, default=None, help='/path/to/weights')
ap.add_argument('--nms_threshold', type=float, default=0.5, help='nms threshold, don\'t change it if not for testing purposes')
ap.add_argument('--cuda', type=bool, default=True)
ap.add_argument('--device', type=int, default=0)
ap.add_argument('--float16', type=bool, default=False)
ap.add_argument('--override', type=bool, default=True, help='override previous bbox results file if exists')
args = ap.parse_args()
compound_coef = args.compound_coef
nms_threshold = args.nms_threshold
use_cuda = args.cuda
gpu = args.device
use_float16 = args.float16
override_prev_results = args.override
project_name = args.project
weights_path = f'weights/efficientdet-d{compound_coef}.pth' if args.weights is None else args.weights
print(f'running coco-style evaluation on project {project_name}, weights {weights_path}...')
params = yaml.safe_load(open(f'projects/{project_name}.yml'))
obj_list = params['obj_list']
input_sizes = [512, 640, 768, 896, 1024, 1280, 1280, 1536]
def evaluate_coco(img_path, set_name, image_ids, coco, model, threshold=0.05):
results = []
processed_image_ids = []
regressBoxes = BBoxTransform()
clipBoxes = ClipBoxes()
for image_id in tqdm(image_ids):
image_info = coco.loadImgs(image_id)[0]
image_path = img_path + image_info['file_name']
ori_imgs, framed_imgs, framed_metas = preprocess(image_path, max_size=input_sizes[compound_coef])
x = torch.from_numpy(framed_imgs[0])
if use_cuda:
x = x.cuda(gpu)
if use_float16:
x = x.half()
else:
x = x.float()
else:
x = x.float()
x = x.unsqueeze(0).permute(0, 3, 1, 2)
features, regression, classification, anchors = model(x)
preds = postprocess(x,
anchors, regression, classification,
regressBoxes, clipBoxes,
threshold, nms_threshold)
processed_image_ids.append(image_id)
if not preds:
continue
preds = invert_affine(framed_metas, preds)[0]
scores = preds['scores']
class_ids = preds['class_ids']
rois = preds['rois']
if rois.shape[0] > 0:
# x1,y1,x2,y2 -> x1,y1,w,h
rois[:, 2] -= rois[:, 0]
rois[:, 3] -= rois[:, 1]
bbox_score = scores
for roi_id in range(rois.shape[0]):
score = float(bbox_score[roi_id])
label = int(class_ids[roi_id])
box = rois[roi_id, :]
if score < threshold:
break
image_result = {
'image_id': image_id,
'category_id': label + 1,
'score': float(score),
'bbox': box.tolist(),
}
results.append(image_result)
if not len(results):
raise Exception('the model does not provide any valid output, check model architecture and the data input')
# write output
filepath = f'{set_name}_bbox_results.json'
if os.path.exists(filepath):
os.remove(filepath)
json.dump(results, open(filepath, 'w'), indent=4)
return processed_image_ids
def _eval(coco_gt, image_ids, pred_json_path):
# load results in COCO evaluation tool
coco_pred = coco_gt.loadRes(pred_json_path)
# run COCO evaluation
print('BBox')
coco_eval = COCOeval(coco_gt, coco_pred, 'bbox')
coco_eval.params.imgIds = image_ids
coco_eval.evaluate()
coco_eval.accumulate()
coco_eval.summarize()
if __name__ == '__main__':
SET_NAME = params['val_set']
VAL_GT = f'datasets/{params["project_name"]}/annotations/instances_{SET_NAME}.json'
VAL_IMGS = f'datasets/{params["project_name"]}/{SET_NAME}/'
MAX_IMAGES = 10000
coco_gt = COCO(VAL_GT)
image_ids = coco_gt.getImgIds()[:MAX_IMAGES]
if override_prev_results or not os.path.exists(f'{SET_NAME}_bbox_results.json'):
model = EfficientDetBackbone(compound_coef=compound_coef, num_classes=len(obj_list),
ratios=eval(params['anchors_ratios']), scales=eval(params['anchors_scales']))
model.load_state_dict(torch.load(weights_path, map_location=torch.device('cpu')))
model.requires_grad_(False)
model.eval()
if use_cuda:
model.cuda(gpu)
if use_float16:
model.half()
image_ids = evaluate_coco(VAL_IMGS, SET_NAME, image_ids, coco_gt, model)
_eval(coco_gt, image_ids, f'{SET_NAME}_bbox_results.json')