-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathtest_vcoco.py
421 lines (324 loc) · 16.9 KB
/
test_vcoco.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
import json
import os
import cv2
import time
import threading
import argparse
import torch
import yaml
import pickle
import numpy as np
from utils.vsrl_eval import VCOCOeval
from backbone import EfficientDetBackbone
from efficientdet.utils import BBoxTransform, ClipBoxes
from efficientdet.help_function import single_iou, single_ioa, single_inter, single_union, transform_action, label_to_class, sub_label_to_class
from utils.utils import preprocess, invert_affine, postprocess, postprocess_hoi, postprocess_dense_union, postprocess_hoi_flip, postprocess_dense_union_flip
from utils.apply_prior import apply_prior
from utils.timer import Timer
from utils.visual import visual
ap = argparse.ArgumentParser()
ap.add_argument('-p', '--project', type=str, default='vcoco', help='project file that contains parameters')
ap.add_argument('-c', '--compound_coef', type=int, default=3, help='coefficients of efficientdet')
ap.add_argument('-w', '--weights', type=str, default=None, help='/path/to/weights')
ap.add_argument('--nms_threshold', type=float, default=0.3, help='nms threshold, don\'t change it if not for testing purposes')
ap.add_argument('--cuda', type=int, default=1)
ap.add_argument('--device', type=int, default=0)
ap.add_argument('--float16', type=int, default=0)
ap.add_argument('--override', type=int, default=0, help='override previous bbox results file if exists')
ap.add_argument('--data_dir', type=str, default='./datasets', help='the root folder of dataset')
ap.add_argument('--need_visual', type=int, default=0, help='whether need to visualize the results')
ap.add_argument('--flip_test', type=int, default=1, help='whether apply flip augmentation when testing')
args = ap.parse_args()
compound_coef = args.compound_coef
nms_threshold = args.nms_threshold
use_cuda = args.cuda
gpu = args.device
use_float16 = args.float16
override_prev_results = args.override
need_visual = args.need_visual
weights_path = f'weights/efficientdet-d{compound_coef}.pth' if args.weights is None else args.weights
data_dir = args.data_dir
project = args.project
params = yaml.safe_load(open(f'projects/{project}.yml'))
SET_NAME = params['val_set']
project_name = params["project_name"]
print(f'running coco-style evaluation on project {project_name}, weights {weights_path}...')
params = yaml.safe_load(open(f'projects/{project}.yml'))
obj_list = params['obj_list']
union_action_list = eval(params['union_action_list'])
input_sizes = [512, 640, 768, 896, 1024, 1280, 1280, 1536]
input_size = input_sizes[compound_coef]
output_dir = f"./logs/{project_name}/results"
if not os.path.exists(output_dir):
os.mkdir(output_dir)
if args.flip_test:
detection_path = os.path.join(output_dir, f'{SET_NAME}_bbox_results_flip_final.pkl')
else:
detection_path = os.path.join(output_dir, f'{SET_NAME}_bbox_results_final.pkl')
def calc_ioa(a, b):
# a(anchor) [boxes, (x1, y1, x2, y2)]
# b(gt, coco-style) [boxes, (x1, y1, x2, y2)]
area = (b[:, 2] - b[:, 0]) * (b[:, 3] - b[:, 1])
exp_x1 = np.expand_dims(a[:, 0], axis=1)
exp_x2 = np.expand_dims(a[:, 2], axis=1)
exp_y1 = np.expand_dims(a[:, 1], 1)
exp_y2 = np.expand_dims(a[:, 3], 1)
iw = np.where(exp_x2 < b[:, 2], exp_x2, b[:, 2]) - np.where(exp_x1 > b[:, 0], exp_x1, b[:, 0])
ih = np.where(exp_y2 < b[:, 3], exp_y2, b[:, 3]) - np.where(exp_y1 > b[:, 1], exp_y1, b[:, 1])
iw = np.where(iw > 0, iw, 0)
ih = np.where(ih > 0, ih, 0)
intersection = iw * ih
area = np.where(area > 1e-6, area, 1e-6)
IoA = intersection / area
return IoA
def calc_iou(a, b):
# a(anchor) [boxes, (x1, y1, x2, y2)]
# b(gt, coco-style) [boxes, (x1, y1, x2, y2)]
area = (b[:, 2] - b[:, 0]) * (b[:, 3] - b[:, 1])
exp_x1 = np.expand_dims(a[:, 0], axis=1)
exp_x2 = np.expand_dims(a[:, 2], axis=1)
exp_y1 = np.expand_dims(a[:, 1], 1)
exp_y2 = np.expand_dims(a[:, 3], 1)
iw = np.where(exp_x2 < b[:, 2], exp_x2, b[:, 2]) - np.where(exp_x1 > b[:, 0], exp_x1, b[:, 0])
ih = np.where(exp_y2 < b[:, 3], exp_y2, b[:, 3]) - np.where(exp_y1 > b[:, 1], exp_y1, b[:, 1])
iw = np.where(iw > 0, iw, 0)
ih = np.where(ih > 0, ih, 0)
ua = np.expand_dims((a[:, 2] - a[:, 0]) * (a[:, 3] - a[:, 1]), axis=1) + area - iw * ih
ua = np.where(ua > 0, ua, 1e-8)
intersection = iw * ih
IoU = intersection / ua
return IoU
def xy_to_wh(bbox):
ctr_x = (bbox[0] + bbox[2]) / 2
ctr_y = (bbox[1] + bbox[3]) / 2
width = bbox[2] - bbox[0]
height = bbox[3] - bbox[1]
return ctr_x, ctr_y, width, height
def fetch_location_score(anchor_bbox, obj_bbox, target_bbox, human_bbox, sigma):
xo, yo, wo, ho = xy_to_wh(obj_bbox)
xt, yt, wt, ht = xy_to_wh(target_bbox)
xa, ya, wa, ha = xy_to_wh(anchor_bbox)
dist = np.zeros(2, dtype=np.float)
dist[0] = (xo - xt) / wa
dist[1] = (yo - yt) / ha
return np.exp(-1*np.sum(dist**2)/(2*sigma**2))
def target_object_dist(target_objects_pos, objects_pos, anchors):
width = anchors[:, 2] - anchors[:, 0]
height = anchors[:, 3] - anchors[:, 1]
anchors_size = np.stack([width, height], axis=1)
anchors_size = np.expand_dims(anchors_size, axis=1)
target_objects_pos = np.expand_dims(target_objects_pos, 1)
diff = target_objects_pos - objects_pos
diff = diff / anchors_size
dist = np.sum(diff**2, axis=2)
return dist
def hoi_match(image_id, preds_inst, preds_union, prior_mask, thre=0.05, human_thre=0.6, anchor_thre=0.25, loc_thre=0.1):
num_inst = len(preds_inst["rois"])
humans = []
objects = []
human_bboxes = []
human_inst_ids = []
human_role_scores = []
while len(humans)==0:
if human_thre < 0.5:
break
for inst_id in range(num_inst):
if preds_inst["obj_class_ids"][inst_id] != 0 or preds_inst["obj_scores"][inst_id] < human_thre:
continue
item = {}
item["bbox"] = preds_inst["rois"][inst_id]
item["agent_scores"] = preds_inst["act_scores"][inst_id]
item["role_scores"] = transform_action(preds_inst["act_scores"][inst_id], "subject")
item["obj_scores"] = preds_inst["obj_scores"][inst_id]
item["inst_id"] = inst_id
humans.append(item)
human_bboxes.append(item["bbox"])
human_inst_ids.append(item["inst_id"])
human_role_scores.append(item["role_scores"])
human_thre -= 0.1
human_bboxes = np.array(human_bboxes)
human_inst_ids = np.array(human_inst_ids)
human_role_scores = np.array(human_role_scores)
obj_role_scores = []
for obj_id in range(len(preds_inst["rois"])):
item = {}
obj_role_score = transform_action(preds_inst["act_scores"][obj_id], "object")
obj_role_score = apply_prior(obj_role_score, preds_inst["obj_class_ids"][obj_id])
item["obj_role_scores"] = obj_role_score
item["obj_scores"] = preds_inst["obj_scores"][obj_id]
item["obj_class_id"] = preds_inst["obj_class_ids"][obj_id]
item["inst_id"] = obj_id
obj_bbox = preds_inst["rois"][obj_id]
item["bbox"] = obj_bbox
objects.append(item)
obj_role_scores.append(obj_role_score)
object_bboxes = np.array(preds_inst["rois"])
obj_role_scores = np.array(obj_role_scores)
hoi_pair_score = np.zeros((len(humans), len(preds_inst["obj_class_ids"]), len(union_action_list)), dtype=np.float)
if len(human_bboxes) > 0:
IoA = calc_ioa(preds_union["rois"], human_bboxes)
IoA_max = np.max(IoA, axis=1)
human_foreground = IoA_max > 0.25
human_IoA = IoA[human_foreground]
for key in preds_union:
preds_union[key] = preds_union[key][human_foreground]
new_IoA = calc_ioa(preds_union["rois"], preds_inst["rois"])
new_IoA_argmax = np.argmax(new_IoA, axis=1)
new_IoA[np.arange(new_IoA.shape[0]), new_IoA_argmax] = 0
new_IoA_sec_max = np.max(new_IoA, axis=1)
obj_foreground = new_IoA_sec_max > 0.25
for key in preds_union:
preds_union[key] = preds_union[key][obj_foreground]
human_IoU = calc_iou(preds_union["rois"], human_bboxes)
human_IoA = human_IoA[obj_foreground]
human_IoU_argmax = np.argmax(human_IoU * (human_IoA > 0.25), axis=1)
obj_IoA = calc_ioa(preds_union["rois"], preds_inst["rois"])
num_union = len(preds_union["rois"])
num_human = len(human_bboxes)
sp_vectors = preds_union["sp_vector"]
inter_human_regions = human_bboxes[human_IoU_argmax]
humans_pos_x = (inter_human_regions[:, 0] + inter_human_regions[:, 2]) / 2
humans_pos_y = (inter_human_regions[:, 1] + inter_human_regions[:, 3]) / 2
humans_pos = np.stack([humans_pos_x, humans_pos_y], axis=1)
inter_objects_pos = humans_pos + sp_vectors
objects_pos_x = (object_bboxes[:, 0] + object_bboxes[:, 2]) / 2
objects_pos_y = (object_bboxes[:, 1] + object_bboxes[:, 3]) / 2
objects_pos = np.stack([objects_pos_x, objects_pos_y], axis=1)
obj_dists = target_object_dist(inter_objects_pos, objects_pos, preds_union["rois"])
inter_human_instids = human_inst_ids[human_IoU_argmax]
obj_dists[np.arange(num_union), inter_human_instids] = 100
obj_dists[obj_IoA < 0.25] = 100
inter_obj_ids = np.argmin(obj_dists, 1)
inter_obj_dist = obj_dists[np.arange(num_union), inter_obj_ids]
sigma = 0.9
location_scores = np.exp(-1 * inter_obj_dist / (2 * sigma ** 2))
location_scores = np.where(location_scores<loc_thre, 0, location_scores)
anchor_scores = preds_union["act_scores"]
anchor_scores = np.where(anchor_scores<anchor_thre, 0, anchor_scores)
inter_human_ids = human_IoU_argmax
inter_human_role_score = human_role_scores[inter_human_ids]
inst_object_role_score = obj_role_scores[inter_obj_ids]
inter_scores = 0.5 * ((inter_human_role_score + inst_object_role_score) * anchor_scores).T * location_scores
inter_scores = inter_scores.T
inter_scores[inst_object_role_score == 0] = 0
for human_id in range(num_human):
human_inter = inter_human_ids == human_id
human_inter_obj_id = inter_obj_ids[human_inter]
human_inter_score = inter_scores[human_inter]
for obj_id in range(num_inst):
hoi_pair_score[human_id, obj_id] = np.sum(human_inter_score[human_inter_obj_id==obj_id], axis=0)
for human_id in range(len(humans)):
hoi_pair_score[human_id, :, :] *= humans[human_id]["obj_scores"]
for obj_id in range(len(preds_inst["rois"])):
obj_cat = preds_inst["obj_class_ids"][obj_id]
hoi_pair_score[:, obj_id, :] *= preds_inst["obj_scores"][obj_id]
hoi_pair_score[:, obj_id, :] *= prior_mask[:, obj_cat + 1]
if args.flip_test:
hoi_pair_score /= 2
dets = []
for human_id, human in enumerate(humans):
det = {}
det["image_id"] = image_id
det["person_box"] = human["bbox"]
max_score = np.max(hoi_pair_score[human_id], axis=0)
max_obj_id = np.argmax(hoi_pair_score[human_id], axis=0)
for id in range(len(label_to_class)):
action = label_to_class[id][0]
role = label_to_class[id][1]
obj_bbox = preds_inst["rois"][max_obj_id[id]]
if max_score[id] > thre or prior_mask[id, 0] < 0.1:
det[action + "_" + role] = (obj_bbox[0], obj_bbox[1], obj_bbox[2], obj_bbox[3], max_score[id])
agent_score = max_score[id]
else:
if human["role_scores"][id] > 0.0 and prior_mask[id, 0] > 0.1:
det[action + "_" + role] = (0, 0, 0, 0, human["role_scores"][id] * human["obj_scores"] * prior_mask[id, 0])
agent_score = human["role_scores"][id] * human["obj_scores"]
else:
det[action + "_" + role] = (0, 0, 0, 0, 0)
agent_score = 0
if action + "_agent" not in det:
det[action + "_agent"] = agent_score
else:
det[action + "_agent"] = max(agent_score, det[action + "_agent"])
for i in range(len(sub_label_to_class)):
action = sub_label_to_class[i]
if action + "_agent" not in det:
det[action+"_agent"] = human["agent_scores"][i]
dets.append(det)
return dets
def img_detect(file, img_dir, model, input_size, regressBoxes, clipBoxes, prior_mask, threshold):
fname, ext = os.path.splitext(file)
image_id = int(fname.split("_")[-1])
img_path = os.path.join(img_dir, file)
ori_imgs, framed_imgs, framed_metas = preprocess(img_path, max_size=input_size)
if use_cuda:
x = torch.stack([torch.from_numpy(fi).cuda() for fi in framed_imgs], 0)
else:
x = torch.stack([torch.from_numpy(fi) for fi in framed_imgs], 0)
x = x.to(torch.float32 if not use_float16 else torch.float16).permute(0, 3, 1, 2)
if args.flip_test:
ids = torch.arange(x.shape[-1]-1, -1, -1).long().cuda()
x_flip = x[..., ids]
x_cat = torch.cat([x, x_flip], 0)
with torch.no_grad():
if args.flip_test:
features, union_act_cls, union_sub_reg, union_obj_reg, \
inst_act_cls, inst_obj_cls, inst_bbox_reg, anchors = model(x_cat)
anchors = torch.cat([anchors, anchors], 0)
preds_union = postprocess_dense_union_flip(x_cat, anchors, union_act_cls, union_sub_reg, union_obj_reg,
regressBoxes, clipBoxes, 0.5, 1)
preds_inst = postprocess_hoi_flip(x_cat, anchors, inst_bbox_reg, inst_obj_cls, inst_act_cls,
regressBoxes, clipBoxes, threshold, nms_threshold,
mode="object", classwise=True)
else:
features, union_act_cls, union_sub_reg, union_obj_reg, \
inst_act_cls, inst_obj_cls, inst_bbox_reg, anchors = model(x)
preds_union = postprocess_dense_union(x, anchors, union_act_cls, union_sub_reg, union_obj_reg,
regressBoxes, clipBoxes, 0.5, 1, classwise=True)
preds_inst = postprocess_hoi(x, anchors, inst_bbox_reg, inst_obj_cls, inst_act_cls,
regressBoxes, clipBoxes, threshold, nms_threshold,
mode="object", classwise=True)
preds_inst = invert_affine(framed_metas, preds_inst)[0]
preds_union = invert_affine(framed_metas, preds_union)[0]
dets = hoi_match(image_id, preds_inst, preds_union, prior_mask)
return dets
def test(threshold=0.2):
with open("datasets/vcoco/new_prior_mask.pkl", "rb") as file:
prior_mask = pickle.load(file, encoding="bytes")
model = EfficientDetBackbone(num_classes=len(eval(params["obj_list"])), num_union_classes=25,
num_inst_classes=51, compound_coef=args.compound_coef,
ratios=eval(params["anchors_ratios"]), scales=eval(params["anchors_scales"]))
model.load_state_dict(torch.load(weights_path, map_location=torch.device('cpu')))
model.requires_grad_(False)
model.eval()
if args.cuda:
model = model.cuda()
if args.float16:
model = model.half()
regressBoxes = BBoxTransform()
clipBoxes = ClipBoxes()
img_dir = os.path.join(data_dir, "vcoco/coco/images/%s" % "val2014")
with open(os.path.join(data_dir, 'vcoco/data/splits/vcoco_test.ids'), 'r') as f:
image_ids = f.readlines()
image_ids = [int(id) for id in image_ids]
_t = {'im_detect': Timer(), 'misc': Timer()}
detection = []
for i, image_id in enumerate(image_ids):
_t['im_detect'].tic()
file = "COCO_val2014_" + (str(image_id)).zfill(12) + '.jpg'
img_detection = img_detect(file, img_dir, model, input_size, regressBoxes, clipBoxes, prior_mask, threshold=threshold)
detection.extend(img_detection)
if need_visual:
visual(img_detection, image_id)
_t['im_detect'].toc()
print('im_detect: {:d}/{:d}, average time: {:.3f}s'.format(i + 1, len(image_ids), _t['im_detect'].average_time))
with open(detection_path, "wb") as file:
pickle.dump(detection, file)
if __name__ == '__main__':
vsrl_annot_file = "./datasets/vcoco/data/vcoco/vcoco_test.json"
coco_file = "./datasets/vcoco/coco/annotations/instances_val2014.json"
split_file = "./datasets/vcoco/data/splits/vcoco_test.ids"
if override_prev_results or not os.path.exists(detection_path):
test()
vcocoeval = VCOCOeval(vsrl_annot_file, coco_file, split_file)
vcocoeval._do_eval(detection_path, ovr_thresh=0.5)