-
Notifications
You must be signed in to change notification settings - Fork 119
/
Copy pathscannet_dataset.py
134 lines (120 loc) · 5.96 KB
/
scannet_dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
import pickle
import os
import numpy as np
class ScannetDataset():
def __init__(self, root, npoints=8192, split='train'):
self.npoints = npoints
self.root = root
self.split = split
self.data_filename = os.path.join(self.root, 'scannet_%s.pickle' % split)
with open(self.data_filename, 'rb') as fp:
self.scene_points_list = pickle.load(fp, encoding='bytes')
self.semantic_labels_list = pickle.load(fp, encoding='bytes')
if split == 'train':
labelweights = np.zeros(21)
for seg in self.semantic_labels_list:
tmp, _ = np.histogram(seg, range(22))
labelweights += tmp
labelweights = labelweights.astype(np.float32)
labelweights = labelweights/np.sum(labelweights)
self.labelweights = 1/np.log(1.2+labelweights)
elif split == 'test':
self.labelweights = np.ones(21)
def __getitem__(self, index):
point_set = self.scene_points_list[index]
semantic_seg = self.semantic_labels_list[index].astype(np.int32)
coordmax = np.max(point_set,axis=0)
coordmin = np.min(point_set,axis=0)
smpmin = np.maximum(coordmax-[1.5, 1.5, 3.0], coordmin)
smpmin[2] = coordmin[2]
smpsz = np.minimum(coordmax-smpmin, [1.5, 1.5, 3.0])
smpsz[2] = coordmax[2]-coordmin[2]
cur_semantic_seg = None
cur_point_set = None
mask = None
for i in range(10):
curcenter = point_set[np.random.choice(len(semantic_seg),1)[0],:]
curmin = curcenter-[0.75, 0.75, 1.5]
curmax = curcenter+[0.75, 0.75, 1.5]
curmin[2] = coordmin[2]
curmax[2] = coordmax[2]
curchoice = np.sum((point_set >= (curmin-0.2))*(point_set <= (curmax+0.2)),axis=1) == 3
cur_point_set = point_set[curchoice, :]
cur_semantic_seg = semantic_seg[curchoice]
if len(cur_semantic_seg) == 0:
continue
mask = np.sum((cur_point_set >= (curmin-0.01))*(cur_point_set <= (curmax+0.01)), axis=1) == 3
vidx = np.ceil((cur_point_set[mask, :]-curmin)/(curmax-curmin)*[31.0, 31.0, 62.0])
vidx = np.unique(vidx[:, 0] * 31.0 * 62.0 + vidx[:, 1] * 62.0 + vidx[:, 2])
isvalid = np.sum(cur_semantic_seg > 0)/len(cur_semantic_seg) >= 0.7 and len(vidx)/31.0/31.0/62.0 >= 0.02
if isvalid:
break
choice = np.random.choice(len(cur_semantic_seg), self.npoints, replace=True)
point_set = cur_point_set[choice,:]
semantic_seg = cur_semantic_seg[choice]
mask = mask[choice]
sample_weight = self.labelweights[semantic_seg]
sample_weight *= mask
return point_set, semantic_seg, sample_weight
def __len__(self):
return len(self.scene_points_list)
class ScannetDatasetWholeScene(object):
def __init__(self, root, npoints=8192, split='train'):
self.npoints = npoints
self.root = root
self.split = split
self.data_filename = os.path.join(self.root, 'scannet_%s.pickle' % split)
with open(self.data_filename, 'rb') as fp:
self.scene_points_list = pickle.load(fp, encoding='bytes')
self.semantic_labels_list = pickle.load(fp, encoding='bytes')
if split == 'train':
labelweights = np.zeros(21)
for seg in self.semantic_labels_list:
tmp, _ = np.histogram(seg, range(22))
labelweights += tmp
labelweights = labelweights.astype(np.float32)
labelweights = labelweights/np.sum(labelweights)
self.labelweights = 1/np.log(1.2+labelweights)
elif split == 'test':
self.labelweights = np.ones(21)
def __getitem__(self, index):
point_set_ini = self.scene_points_list[index]
semantic_seg_ini = self.semantic_labels_list[index].astype(np.int32)
coordmax = np.max(point_set_ini, axis=0)
coordmin = np.min(point_set_ini, axis=0)
nsubvolume_x = np.ceil((coordmax[0]-coordmin[0])/1.5).astype(np.int32)
nsubvolume_y = np.ceil((coordmax[1]-coordmin[1])/1.5).astype(np.int32)
nsubvolume_x *= 2
nsubvolume_y *= 2
point_sets = list()
semantic_segs = list()
sample_weights = list()
for i in range(nsubvolume_x):
for j in range(nsubvolume_y):
curmin = coordmin+[i * 0.75, j * 0.75, 0]
curmax = coordmin+[i * 0.75 + 1.5, j * 0.75 + 1.5, coordmax[2]-coordmin[2]]
curchoice = np.sum((point_set_ini >= (curmin-0.2))*(point_set_ini <= (curmax+0.2)), axis=1) == 3
cur_point_set = point_set_ini[curchoice, :]
cur_semantic_seg = semantic_seg_ini[curchoice]
if len(cur_semantic_seg) == 0:
continue
mask = np.sum((cur_point_set >= (curmin-0.001))*(cur_point_set <= (curmax+0.001)), axis=1) == 3
choice = np.random.choice(len(cur_semantic_seg), self.npoints, replace=True)
point_set = cur_point_set[choice, :] # Nx3
semantic_seg = cur_semantic_seg[choice] # N
mask = mask[choice]
if sum(mask) < 2000:
continue
if sum(mask)/float(len(mask)) < 0.01:
continue
sample_weight = self.labelweights[semantic_seg]
sample_weight *= mask # N
point_sets.append(np.expand_dims(point_set, 0)) # 1xNx3
semantic_segs.append(np.expand_dims(semantic_seg, 0)) # 1xN
sample_weights.append(np.expand_dims(sample_weight, 0)) # 1xN
point_sets = np.concatenate(tuple(point_sets), axis=0)
semantic_segs = np.concatenate(tuple(semantic_segs), axis=0)
sample_weights = np.concatenate(tuple(sample_weights), axis=0)
return point_sets, semantic_segs, sample_weights
def __len__(self):
return len(self.scene_points_list)