-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathSPI.cpp
executable file
·281 lines (245 loc) · 6.49 KB
/
SPI.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
/* mbed Microcontroller Library
* Copyright (c) 2006-2013 ARM Limited
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "drivers/SPI.h"
#include "platform/mbed_critical.h"
#if DEVICE_SPI_ASYNCH
#include "platform/mbed_power_mgmt.h"
#endif
#if DEVICE_SPI
namespace mbed {
#if DEVICE_SPI_ASYNCH && TRANSACTION_QUEUE_SIZE_SPI
CircularBuffer<Transaction<SPI>, TRANSACTION_QUEUE_SIZE_SPI> SPI::_transaction_buffer;
#endif
SPI::SPI(PinName mosi, PinName miso, PinName sclk, PinName ssel) :
_spi(),
#if DEVICE_SPI_ASYNCH
_irq(this),
_usage(DMA_USAGE_NEVER),
_deep_sleep_locked(false),
#endif
_bits(8),
_mode(0),
_hz(1000000),
_write_fill(SPI_FILL_CHAR)
{
// No lock needed in the constructor
spi_init(&_spi, mosi, miso, sclk, ssel);
}
SPI::~SPI()
{
if (_owner == this) {
_owner = NULL;
}
}
void SPI::format(int bits, int mode)
{
lock();
_bits = bits;
_mode = mode;
// If changing format while you are the owner then just
// update format, but if owner is changed then even frequency should be
// updated which is done by acquire.
if (_owner == this) {
spi_format(&_spi, _bits, _mode, 0);
} else {
_acquire();
}
unlock();
}
void SPI::frequency(int hz)
{
lock();
_hz = hz;
// If changing format while you are the owner then just
// update frequency, but if owner is changed then even frequency should be
// updated which is done by acquire.
if (_owner == this) {
spi_frequency(&_spi, _hz);
} else {
_acquire();
}
unlock();
}
SPI *SPI::_owner = NULL;
SingletonPtr<PlatformMutex> SPI::_mutex;
// ignore the fact there are multiple physical spis, and always update if it wasn't us last
void SPI::aquire()
{
lock();
if (_owner != this) {
spi_format(&_spi, _bits, _mode, 0);
spi_frequency(&_spi, _hz);
_owner = this;
}
unlock();
}
// Note: Private function with no locking
void SPI::_acquire()
{
if (_owner != this) {
spi_format(&_spi, _bits, _mode, 0);
spi_frequency(&_spi, _hz);
_owner = this;
}
}
int SPI::write(int value)
{
lock();
_acquire();
int ret = spi_master_write(&_spi, value);
unlock();
return ret;
}
int SPI::write(const char *tx_buffer, int tx_length, char *rx_buffer, int rx_length)
{
lock();
_acquire();
int ret = spi_master_block_write(&_spi, tx_buffer, tx_length, rx_buffer, rx_length, _write_fill);
unlock();
return ret;
}
void SPI::lock()
{
_mutex->lock();
}
void SPI::unlock()
{
_mutex->unlock();
}
void SPI::set_default_write_value(char data)
{
lock();
_write_fill = data;
unlock();
}
#if DEVICE_SPI_ASYNCH
int SPI::transfer(const void *tx_buffer, int tx_length, void *rx_buffer, int rx_length, unsigned char bit_width, const event_callback_t &callback, int event)
{
if (spi_active(&_spi)) {
return queue_transfer(tx_buffer, tx_length, rx_buffer, rx_length, bit_width, callback, event);
}
start_transfer(tx_buffer, tx_length, rx_buffer, rx_length, bit_width, callback, event);
return 0;
}
void SPI::abort_transfer()
{
spi_abort_asynch(&_spi);
unlock_deep_sleep();
#if TRANSACTION_QUEUE_SIZE_SPI
dequeue_transaction();
#endif
}
void SPI::clear_transfer_buffer()
{
#if TRANSACTION_QUEUE_SIZE_SPI
_transaction_buffer.reset();
#endif
}
void SPI::abort_all_transfers()
{
clear_transfer_buffer();
abort_transfer();
}
int SPI::set_dma_usage(DMAUsage usage)
{
if (spi_active(&_spi)) {
return -1;
}
_usage = usage;
return 0;
}
int SPI::queue_transfer(const void *tx_buffer, int tx_length, void *rx_buffer, int rx_length, unsigned char bit_width, const event_callback_t &callback, int event)
{
#if TRANSACTION_QUEUE_SIZE_SPI
transaction_t t;
t.tx_buffer = const_cast<void *>(tx_buffer);
t.tx_length = tx_length;
t.rx_buffer = rx_buffer;
t.rx_length = rx_length;
t.event = event;
t.callback = callback;
t.width = bit_width;
Transaction<SPI> transaction(this, t);
if (_transaction_buffer.full()) {
return -1; // the buffer is full
} else {
core_util_critical_section_enter();
_transaction_buffer.push(transaction);
if (!spi_active(&_spi)) {
dequeue_transaction();
}
core_util_critical_section_exit();
return 0;
}
#else
return -1;
#endif
}
void SPI::start_transfer(const void *tx_buffer, int tx_length, void *rx_buffer, int rx_length, unsigned char bit_width, const event_callback_t &callback, int event)
{
lock_deep_sleep();
_acquire();
_callback = callback;
_irq.callback(&SPI::irq_handler_asynch);
spi_master_transfer(&_spi, tx_buffer, tx_length, rx_buffer, rx_length, bit_width, _irq.entry(), event, _usage);
}
void SPI::lock_deep_sleep()
{
if (_deep_sleep_locked == false) {
sleep_manager_lock_deep_sleep();
_deep_sleep_locked = true;
}
}
void SPI::unlock_deep_sleep()
{
if (_deep_sleep_locked == true) {
sleep_manager_unlock_deep_sleep();
_deep_sleep_locked = false;
}
}
#if TRANSACTION_QUEUE_SIZE_SPI
void SPI::start_transaction(transaction_t *data)
{
start_transfer(data->tx_buffer, data->tx_length, data->rx_buffer, data->rx_length, data->width, data->callback, data->event);
}
void SPI::dequeue_transaction()
{
Transaction<SPI> t;
if (_transaction_buffer.pop(t)) {
SPI *obj = t.get_object();
transaction_t *data = t.get_transaction();
obj->start_transaction(data);
}
}
#endif
void SPI::irq_handler_asynch(void)
{
int event = spi_irq_handler_asynch(&_spi);
if (_callback && (event & SPI_EVENT_ALL)) {
unlock_deep_sleep();
_callback.call(event & SPI_EVENT_ALL);
}
#if TRANSACTION_QUEUE_SIZE_SPI
if (event & (SPI_EVENT_ALL | SPI_EVENT_INTERNAL_TRANSFER_COMPLETE)) {
// SPI peripheral is free (event happened), dequeue transaction
dequeue_transaction();
}
#endif
}
#endif
} // namespace mbed
#endif