-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path3sum.py
133 lines (107 loc) · 3.59 KB
/
3sum.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
'''
Given an integer array nums, return all the triplets [nums[i], nums[j], nums[k]] such that
i != j, i != k, and j != k, and nums[i] + nums[j] + nums[k] == 0.
Notice that the solution set must not contain duplicate triplets.
Example 1:
Input: nums = [-1,0,1,2,-1,-4]
Output: [[-1,-1,2],[-1,0,1]]
Explanation:
nums[0] + nums[1] + nums[2] = (-1) + 0 + 1 = 0.
nums[1] + nums[2] + nums[4] = 0 + 1 + (-1) = 0.
nums[0] + nums[3] + nums[4] = (-1) + 2 + (-1) = 0.
The distinct triplets are [-1,0,1] and [-1,-1,2].
Notice that the order of the output and the order of the triplets does not matter.
Example 2:
Input: nums = [0,1,1]
Output: []
Explanation: The only possible triplet does not sum up to 0.
Example 3:
Input: nums = [0,0,0]
Output: [[0,0,0]]
Explanation: The only possible triplet sums up to 0.
Constraints:
3 <= nums.length <= 3000
-10^5 <= nums[i] <= 10^5
'''
from two_sum import twoSumHM
# The brute force way
# Runtime Complexity: O(n³)
# Space Complexity: O(3n)
def threeSumBF(nums):
"""
:type nums: List[int]
:rtype: List[List[int]]
"""
result = set()
for i in range(len(nums)):
for j in range(i + 1, len(nums)):
for k in range(j + 1, len(nums)):
if i != j and i != k and k != j and nums[i] + nums[j] + nums[k] == 0:
result.add(tuple(sorted([nums[i], nums[j], nums[k]])))
# Convert set of tuples to list of lists
new_result = [list(sublist) for sublist in result]
return new_result
# Faster than bruteforce
def twoSum(nums, target):
"""
:type nums: List[int]
:type target: int
:rtype: Set[Tuple[int]]
"""
result = set()
num_dict = {}
for i, num in enumerate(nums):
complement = target - num
if complement in num_dict:
result.add((nums[num_dict[complement]], nums[i]))
num_dict[num] = i
return result
def threeSum(nums):
"""
:type nums: List[int]
:rtype: List[List[int]]
"""
result = set()
for i in range(len(nums)):
# Create a copy of nums without the i'th element
tmp_nums = nums[:]
tmp_nums.pop(i)
target = -nums[i]
two_sum = twoSum(tmp_nums, target)
for j, k in two_sum:
result.add(tuple(sorted([nums[i], j, k])))
# Convert set of tuples to list of lists
new_result = [list(sublist) for sublist in result]
return new_result
'''
Sort the given array in non-decreasing order.
Loop through the array from index 0 to n-1.
For each iteration, set the target as -nums[i].
Set two pointers, j=i+1 and k=n-1.
While j<k, check if nums[j]+nums[k]==target.
If yes, add the triplet {nums[i], nums[j], nums[k]} to the result and move j to the right and k to the left.
If no, move either j or k based on the comparison of nums[j]+nums[k] with target.
To avoid duplicate triplets, skip the iterations where nums[i]==nums[i-1] and also skip the iterations where nums[j]==nums[j-1] or nums[k]==nums[k+1].
'''
# Some Test cases
if __name__ == "__main__":
nums = [-1,0,1,2,-1,-4]
print("\nExample 1:")
print("Input:", nums)
print("Output:", threeSum(nums))
print("Expected: [[-1,-1,2],[-1,0,1]]")
nums = [0,1,1]
print("\nExample 2:")
print("Input:", nums)
print("Output:", threeSum(nums))
print("Expected: []")
nums = [0,0,0]
print("\nExample 3:")
print("Input:", nums)
print("Output:", threeSum(nums))
print("Expected: [0,0,0]")
nums = [0,0,0,0]
print("\nExample 4:")
print("Input:", nums)
print("Output:", threeSum(nums))
print("Expected: [0,0,0]")