generated from fastai/nbdev_template
-
Notifications
You must be signed in to change notification settings - Fork 30
/
Copy pathtest_ci.py
453 lines (361 loc) · 20.1 KB
/
test_ci.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
import wget
import logging
import shutil
import pandas as pd
from time import time
import os
from datetime import datetime
import sys
import platform
import zipfile
import subprocess
import numpy as np
import alphapept.interface
from alphapept.settings import load_settings, load_settings_as_template, create_default_settings
import yaml
import alphapept
import alphapept.io
from alphapept.__version__ import VERSION_NO as alphapept_version
from alphapept.paths import DEFAULT_SETTINGS_PATH
# Global dictionary to store links to the files
FILE_DICT = {}
FILE_DICT['thermo_IRT.raw'] = 'https://datashare.biochem.mpg.de/s/GpXsATZtMwgQoQt/download'
FILE_DICT['bruker_IRT.d'] = 'https://datashare.biochem.mpg.de/s/2sWNvImHwdELg55/download'
FILE_DICT['thermo_HeLa.raw'] = 'https://datashare.biochem.mpg.de/s/QGdWkld0oXN768W/download'
FILE_DICT['bruker_HeLa.d'] = 'https://datashare.biochem.mpg.de/s/h2skyiMU9qWKKv2/download'
FILE_DICT['IRT_fasta.fasta'] = 'https://datashare.biochem.mpg.de/s/p8Qu3KolzbSiCHH/download'
FILE_DICT['contaminants.fasta'] = 'https://datashare.biochem.mpg.de/s/aRaFlwxdCH08OWd/download'
FILE_DICT['human.fasta'] = 'https://datashare.biochem.mpg.de/s/7KvRKOmMXQTTHOp/download'
FILE_DICT['yeast.fasta'] = 'https://datashare.biochem.mpg.de/s/8zioyWKVHEPeo34/download'
FILE_DICT['e_coli.fasta'] = 'https://datashare.biochem.mpg.de/s/ZUqqruTOxBbSf1k/download'
FILE_DICT['arabidopsis.fasta'] = 'https://datashare.biochem.mpg.de/s/YQXTFSVnF4AMTOM/download'
FILE_DICT['all_uniprot_reviewed.fasta'] = 'https://datashare.biochem.mpg.de/s/QbzV6IvG2oHDYn6/download'
#PXD006109
FILE_DICT['PXD006109_HeLa12_1.raw'] = 'https://datashare.biochem.mpg.de/s/8S6i1KObhDKABft/download'
FILE_DICT['PXD006109_HeLa12_2.raw'] = 'https://datashare.biochem.mpg.de/s/y7uY3Pt6tq5PmFn/download'
FILE_DICT['PXD006109_HeLa12_3.raw'] = 'https://datashare.biochem.mpg.de/s/wl6Av0BKY2eShsd/download'
FILE_DICT['PXD006109_HeLa2_1.raw'] = 'https://datashare.biochem.mpg.de/s/QOi7Lsmsbr4NhnF/download'
FILE_DICT['PXD006109_HeLa2_2.raw'] = 'https://datashare.biochem.mpg.de/s/aZi5xdNQhaypRok/download'
FILE_DICT['PXD006109_HeLa2_3.raw'] = 'https://datashare.biochem.mpg.de/s/WiymcH8Oz58ASnx/download'
#PXD010012
FILE_DICT['PXD010012_CT_1_C1_01_Base.d'] = 'https://datashare.biochem.mpg.de/s/lAWp1NSk4Mvw89r/download'
FILE_DICT['PXD010012_CT_2_C1_01_Base.d'] = 'https://datashare.biochem.mpg.de/s/SoaccnPn9eaAM41/download'
FILE_DICT['PXD010012_CT_3_C1_01_Base.d'] = 'https://datashare.biochem.mpg.de/s/kGUNxrIf3AZMWNt/download'
FILE_DICT['PXD010012_CT_4_C1_01_Base.d'] = 'https://datashare.biochem.mpg.de/s/Rsaw8kj49ujZxBm/download'
FILE_DICT['PXD010012_CT_5_C1_01_Base.d'] = 'https://datashare.biochem.mpg.de/s/wTgzZ88hwdBLF1Q/download'
FILE_DICT['PXD010012_CT_1_C2_01_Ratio.d'] = 'https://datashare.biochem.mpg.de/s/DIwnuYgLPRtUPmF/download'
FILE_DICT['PXD010012_CT_2_C2_01_Ratio.d'] = 'https://datashare.biochem.mpg.de/s/ZofHi6wcJlTQD32/download'
FILE_DICT['PXD010012_CT_3_C2_01_Ratio.d'] = 'https://datashare.biochem.mpg.de/s/H8HLHxmQG9EFeMA/download'
FILE_DICT['PXD010012_CT_4_C2_01_Ratio.d'] = 'https://datashare.biochem.mpg.de/s/swO523hdX1aqN3R/download'
FILE_DICT['PXD010012_CT_5_C2_01_Ratio.d'] = 'https://datashare.biochem.mpg.de/s/Kbq97G9IzxQ8AHb/download'
#PXD015087
FILE_DICT['Hela_P035210_BA1_S00_A00_R1.raw'] = 'https://datashare.biochem.mpg.de/s/W7LPSZFrxlnIfsN/download'
FILE_DICT['Hela_P035210_BA1_S00_A00_R5.raw'] = 'https://datashare.biochem.mpg.de/s/jySnR9qAZouc2Wu/download'
FILE_DICT['Hela_P035210_BA1_S00_A00_R14.raw'] = 'https://datashare.biochem.mpg.de/s/sa0oBpIuuVppa43/download'
FILE_DICT['Hela_P035210_BA1_S00_A00_R19.raw'] = 'https://datashare.biochem.mpg.de/s/ubzGyDP2gLyFO3b/download'
mods = sys.modules[__name__]
def config_test_paths(BASE_DIR, TEST_DIR, ARCHIVE_DIR, MONGODB_USER, MONGODB_URL):
mods.BASE_DIR = BASE_DIR
mods.TEST_DIR = TEST_DIR
mods.ARCHIVE_DIR = ARCHIVE_DIR
mods.MONGODB_USER = MONGODB_USER
mods.MONGODB_URL = MONGODB_URL
def delete_folder(dir_name):
if os.path.exists(dir_name):
shutil.rmtree(dir_name)
def create_folder(dir_name):
if not os.path.exists(dir_name):
logging.info(f'Creating dir {dir_name}.')
os.makedirs(dir_name)
EXE_PATH = 'C:/actions-runner/_work/alphapept/alphapept/installer/one_click_windows/dist/alphapept/alphapept.exe'
class TestRun():
"""
Class to prepare and download files to make a default test run
"""
def __init__(self, id, experimental_files, fasta_paths, new_files, sample = None, fraction = None, custom_settings = None):
self.id = id
self.file_paths = experimental_files
self.fasta_paths = fasta_paths
self.new_files = new_files
self.sample = sample
self.fraction = fraction
self.custom_settings = custom_settings
# Flag to run mixed_species_quantification
self.run_mixed_analysis = None
if os.path.isfile(EXE_PATH):
self.exe_path = EXE_PATH
timestamp = datetime.fromtimestamp(os.path.getmtime(EXE_PATH))
logging.info(f'Using compiled exe from {timestamp}.')
else:
self.exe_path = None
def get_file(self, filename, link):
"""
Downloads test file or folder if it does not exist yet.
"""
if not (os.path.isfile(filename) or os.path.isdir(filename)):
logging.info(f'Downloading {filename}.')
if filename.endswith('.d'):
wget.download(link, filename+'_temp')
with zipfile.ZipFile(filename+'_temp', 'r') as zip_ref:
logging.info('Unzipping.')
zip_ref.extractall(filename+'_')
logging.info('Cleaning up zipfile')
source_dir = os.path.join(filename+'_', os.listdir(filename+'_')[0])
files_to_move = os.listdir(source_dir)
os.mkdir(filename)
for to_move in files_to_move:
shutil.move(os.path.join(source_dir, to_move), os.path.join(filename, to_move))
os.rmdir(source_dir)
os.rmdir(filename+'_')
else:
wget.download(link, filename)
def prepare_files(self):
"""
Downloads files to base_dir and copies to test folder for a test run
"""
create_folder(BASE_DIR)
create_folder(ARCHIVE_DIR)
for file in self.file_paths + self.fasta_paths:
self.get_file(os.path.join(BASE_DIR, file), FILE_DICT[file])
delete_folder(TEST_DIR)
create_folder(TEST_DIR)
for file in self.file_paths + self.fasta_paths:
if file.endswith('.d'):
shutil.copytree(os.path.join(BASE_DIR, file), os.path.join(TEST_DIR, file))
else:
shutil.copyfile(os.path.join(BASE_DIR, file), os.path.join(TEST_DIR, file))
import os
def prepare_settings(self):
"""
Prepares the settings according to the test run
"""
create_default_settings()
self.settings = load_settings_as_template(DEFAULT_SETTINGS_PATH)
self.settings['experiment']['file_paths'] = [os.path.join(TEST_DIR, _) for _ in self.file_paths]
self.settings['experiment']['fasta_paths'] = [os.path.join(TEST_DIR, _) for _ in self.fasta_paths]
if not self.sample == None:
self.settings['experiment']['sample_group'] = self.sample
if not self.fraction == None:
self.settings['experiment']['fraction'] = self.fraction
def run(self, password=None):
if self.new_files:
self.prepare_files()
if 'settings' not in self.__dict__.keys():
logging.info('No settings provided. Creating from default settings.')
self.prepare_settings()
report = {}
report['timestamp'] = datetime.now()
settings = self.settings
if self.custom_settings is not None:
for group in self.custom_settings:
for key in self.custom_settings[group]:
settings[group][key] = self.custom_settings[group][key]
settings = alphapept.interface.check_version_and_hardware(settings)
dirname = os.path.dirname(settings['experiment']['results_path'])
settings_path = os.path.join(dirname, '_.yaml')
with open(settings_path, "w") as file:
yaml.dump(settings, file)
start = time()
if self.exe_path is not None: #call compiled exe file
logging.info(f'Starting exe from {self.exe_path}') #TODO: Change for different OS
process = subprocess.Popen(f'"{self.exe_path}" workflow "{settings_path}"', stdout=subprocess.PIPE)
for line in iter(process.stdout.readline, b''): # replace '' with b'' for Python 3
logging.info(line.decode('utf8'))
base, ext = os.path.splitext(settings['experiment']['results_path'])
settings_path = base +'.yaml'
settings = load_settings(settings_path)
else:
logging.info("Couldn't find compiled exe. Using Python version for testing.")
settings = alphapept.interface.run_complete_workflow(settings)
end = time()
report['test_id'] = self.id
report['settings'] = settings
report['time_elapsed_min'] = (end-start)/60
try:
report['branch'] = subprocess.check_output("git branch --show-current").decode("utf-8").rstrip('\n')
report['commit'] = subprocess.check_output("git rev-parse --verify HEAD").decode("utf-8").rstrip('\n')
except:
None
report['version'] = alphapept_version
if self.exe_path:
report['pyinstaller'] = True
else:
report['pyinstaller'] = False
report['sysinfo'] = platform.uname()
if self.run_mixed_analysis:
species, groups = self.run_mixed_analysis
report['mixed_species_quantification'] = self.mixed_species_quantification(self.settings, species, groups)
report['protein_fdr_arabidopsis'] = self.mixed_species_fdr(self.settings, ('ARATH','HUMAN')) #ECO for now
self.report = report
if password:
post_id = self.upload_to_db(password)
# Copy results file to archive location
base, ext = os.path.splitext(settings['experiment']['results_path'])
shutil.copyfile(settings['experiment']['results_path'], os.path.join(ARCHIVE_DIR, str(post_id)+ext))
def upload_to_db(self, password):
from pymongo import MongoClient
logging.info('Uploading to DB')
string = f"mongodb+srv://{MONGODB_USER}:{password}@{MONGODB_URL}"
client = MongoClient(string)
#When having keys with dots like filename.ms_data.hdf, mongodb causes an error. This is to remove the dots.
report = self.report
files_old = report['settings']['summary']['file_sizes']['files'].copy()
report['settings']['summary']['file_sizes']['files'] = {}
for file in files_old.keys():
new_filename = file.replace('.ms_data.hdf', '')
report['settings']['summary']['file_sizes']['files'][new_filename] = files_old[file]
post_id = client['github']['performance_runs'].insert_one(report).inserted_id
logging.info(f"Uploaded {post_id}.")
return post_id
def mixed_species_fdr(self, settings, species):
"""
Estimate FDR by searching against differenft FASTAs
"""
df = pd.read_hdf(settings['experiment']['results_path'], 'protein_table')
sub = df.loc[[_ for _ in df.index if 'REV' not in _]]
fdr = len(sub.loc[[_ for _ in sub.index if species[0] in _ and species[1] not in _]]) / len(df)
return fdr
def mixed_species_quantification(self, settings, species, groups, min_count = 2):
"""
Mixed species analysis
"""
df = pd.read_hdf(settings['experiment']['results_path'], 'protein_table')
df.columns = [os.path.split(_)[1].replace('.ms_data.hdf','') for _ in df.columns]
results = {}
for i in ['','_LFQ']:
res = pd.DataFrame()
if i == "_LFQ":
groups = ([_+i for _ in groups[0]], [_+ i for _ in groups[1]])
res['ratio'] = df[groups[0]].median(axis=1)
res['base'] = df[groups[1]].median(axis=1)
res['ratio_count'] = (df[groups[0]] != np.nan).sum(axis=1)
res['base_count'] = (df[groups[1]] != np.nan).sum(axis=1)
res['_ratio'] = np.log2(res['base'] / res['ratio'])
res['_sum'] = np.log2(res['ratio'])
valid = res.query('ratio_count >= @min_count and base_count >= @min_count')
results['cv_median_ratio'+i] = np.nanmedian(df[groups[0]].std(axis=1) / df[groups[0]].mean(axis=1))
results['cv_std_ratio'+i] = np.nanstd(df[groups[0]].std(axis=1) / df[groups[0]].mean(axis=1))
results['cv_median_base'+i] = np.nanmedian(df[groups[1]].std(axis=1) / df[groups[1]].mean(axis=1))
results['cv_std_base'+i] = np.nanstd(df[groups[1]].std(axis=1) / df[groups[1]].mean(axis=1))
for s in species:
sub = valid.loc[[_ for _ in valid.index if s in _]]['_ratio'].values
sub_ratio = np.nanmean(sub[~np.isinf(sub)])
sub_std = np.nanstd(sub[~np.isinf(sub)])
results[s+i+'_mean'] = sub_ratio
results[s+i+'_std'] = sub_std
results['DELTA'+i] = results[species[1]+i+'_mean'] - results[species[0]+i+'_mean']
results['STD'+i] = np.sqrt(results[species[1]+i+'_std']**2 + results[species[0]+i+'_std']**2)
results['T'+i] = results['DELTA'+i] / results['STD'+i]
return results
def main(runtype = None, password = None, new_files = True):
if runtype == None:
if len(sys.argv) == 3:
tmp_folder = sys.argv[1]
runtype = sys.argv[2]
password = None
elif len(sys.argv) == 2:
tmp_folder = os.path.join(os.getcwd(),'sandbox/temp/')
runtype = sys.argv[1]
password = None
else:
tmp_folder = sys.argv[1]
runtype = sys.argv[2]
password = sys.argv[3]
BASE_DIR = os.path.join(tmp_folder,'test_files') # Storarge location for test files
TEST_DIR = os.path.join(tmp_folder,'test_temp')
ARCHIVE_DIR = os.path.join(tmp_folder, 'test_archive')
MONGODB_USER = 'github_actions'
MONGODB_URL = 'ci.yue0n.mongodb.net/'
config_test_paths(BASE_DIR, TEST_DIR, ARCHIVE_DIR, MONGODB_USER, MONGODB_URL)
AVAILABLE = ['bruker_irt', 'bruker_hela', 'thermo_irt', 'thermo_hela', 'thermo_hela_large_fasta', 'thermo_hela_modifications', 'PXD006109', 'PXD010012', 'PXD015087', 'PXD015087_matching', 'PXD015087_matching_fraction']
if runtype == 'bruker_irt':
files = ['bruker_IRT.d']
fasta_files = ['IRT_fasta.fasta','contaminants.fasta']
run = TestRun(runtype, files, fasta_files, new_files)
run.run(password=password)
elif runtype == 'bruker_hela':
files = ['bruker_HeLa.d']
fasta_files = ['human.fasta', 'arabidopsis.fasta', 'contaminants.fasta']
run = TestRun(runtype, files, fasta_files, new_files)
run.run(password=password)
elif runtype == 'thermo_irt':
files = ['thermo_IRT.raw']
fasta_files = ['IRT_fasta.fasta','contaminants.fasta']
run = TestRun(runtype, files, fasta_files, new_files)
run.run(password=password)
elif runtype == 'thermo_singlefrac':
files = ['Hela_P035210_BA1_S00_A00_R1.raw']
fasta_files = ['human.fasta','contaminants.fasta']
run = TestRun(runtype, files, fasta_files, new_files)
run.run(password=password)
elif runtype == 'thermo_hela':
files = ['thermo_HeLa.raw']
fasta_files = ['human.fasta', 'arabidopsis.fasta', 'contaminants.fasta']
run = TestRun(runtype, files, fasta_files, new_files)
run.run(password=password)
elif runtype == 'thermo_hela_large_fasta':
files = ['thermo_HeLa.raw']
fasta_files = ['all_uniprot_reviewed.fasta', 'contaminants.fasta']
run = TestRun(runtype, files, fasta_files, new_files)
run.run(password=password)
elif runtype == 'thermo_hela_modifications':
files = ['thermo_HeLa.raw']
fasta_files = ['human.fasta', 'contaminants.fasta']
custom_settings = {}
fasta = {}
fasta['mods_variable'] = ['oxM','pS','pT','pY']
custom_settings['fasta'] = fasta
run = TestRun(runtype, files, fasta_files, new_files, custom_settings = custom_settings)
run.run(password=password)
elif runtype == 'PXD006109':
files = ['PXD006109_HeLa12_1.raw','PXD006109_HeLa12_2.raw','PXD006109_HeLa12_3.raw','PXD006109_HeLa2_1.raw','PXD006109_HeLa2_2.raw','PXD006109_HeLa2_3.raw']
fasta_files = ['human.fasta','e_coli.fasta','contaminants.fasta']
#Multi-Species test
test_run = TestRun(runtype, files, fasta_files, new_files)
species = ['HUMAN', 'ECO']
groups = (['PXD006109_HeLa12_1', 'PXD006109_HeLa12_2', 'PXD006109_HeLa12_3'], ['PXD006109_HeLa2_1', 'PXD006109_HeLa2_2', 'PXD006109_HeLa2_3'])
test_run.run_mixed_analysis = (species, groups)
test_run.run(password=password)
elif runtype == 'PXD010012':
files = ['PXD010012_CT_1_C1_01_Base.d', 'PXD010012_CT_2_C1_01_Base.d', 'PXD010012_CT_3_C1_01_Base.d', 'PXD010012_CT_4_C1_01_Base.d', 'PXD010012_CT_5_C1_01_Base.d', 'PXD010012_CT_1_C2_01_Ratio.d', 'PXD010012_CT_2_C2_01_Ratio.d', 'PXD010012_CT_3_C2_01_Ratio.d', 'PXD010012_CT_4_C2_01_Ratio.d', 'PXD010012_CT_5_C2_01_Ratio.d']
fasta_files = ['human.fasta','e_coli.fasta','contaminants.fasta']
#Multi-Species test
test_run = TestRun(runtype, files, fasta_files, new_files)
species = ['HUMAN', 'ECO']
groups = (['PXD010012_CT_1_C2_01_Ratio', 'PXD010012_CT_2_C2_01_Ratio', 'PXD010012_CT_3_C2_01_Ratio', 'PXD010012_CT_4_C2_01_Ratio', 'PXD010012_CT_5_C2_01_Ratio'], ['PXD010012_CT_1_C1_01_Base', 'PXD010012_CT_2_C1_01_Base', 'PXD010012_CT_3_C1_01_Base', 'PXD010012_CT_4_C1_01_Base', 'PXD010012_CT_5_C1_01_Base'])
test_run.run_mixed_analysis = (species, groups)
test_run.run(password=password)
elif runtype == 'PXD015087':
files = ['Hela_P035210_BA1_S00_A00_R1.raw', 'Hela_P035210_BA1_S00_A00_R5.raw', 'Hela_P035210_BA1_S00_A00_R14.raw', 'Hela_P035210_BA1_S00_A00_R19.raw']
fasta_files = ['human.fasta', 'contaminants.fasta']
sample = ['A','A','A','A']
fraction = [1,2,3,4]
run = TestRun(runtype, files, fasta_files, new_files, sample = sample, fraction = fraction)
#run.prepare_settings()
#print(run.file_paths)
#run.settings['workflow'] = {'continue_runs': True, 'create_database': False, 'import_raw_data': False, 'find_features': False, 'search_data': False, 'recalibrate_data': False, 'align': True, 'match': False, 'lfq_quantification': True}
run.run(password=password)
elif runtype == 'PXD015087_matching':
files = ['Hela_P035210_BA1_S00_A00_R1.raw', 'Hela_P035210_BA1_S00_A00_R5.raw', 'Hela_P035210_BA1_S00_A00_R14.raw', 'Hela_P035210_BA1_S00_A00_R19.raw']
fasta_files = ['human.fasta', 'contaminants.fasta']
custom_settings = {}
workflow = {}
workflow['match'] = True
custom_settings['workflow'] = workflow
run = TestRun(runtype, files, fasta_files, new_files, custom_settings = custom_settings)
run.run(password=password)
elif runtype == 'PXD015087_matching_fraction':
files = ['Hela_P035210_BA1_S00_A00_R1.raw', 'Hela_P035210_BA1_S00_A00_R5.raw', 'Hela_P035210_BA1_S00_A00_R14.raw', 'Hela_P035210_BA1_S00_A00_R19.raw']
fasta_files = ['human.fasta', 'contaminants.fasta']
sample = ['A','A','B','B']
fraction = [1,2,1,2]
custom_settings = {}
workflow = {}
workflow['match'] = True
custom_settings['workflow'] = workflow
run = TestRun(runtype, files, fasta_files, new_files, sample = sample, fraction = fraction, custom_settings = custom_settings)
run.run(password=password)
else:
raise NotImplementedError(f"Runtime {runtype} not found. Available are {AVAILABLE}")
if __name__ == "__main__":
main()