forked from ReaLLMASIC/nanoGPT
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsoftmax_sweep.py
246 lines (199 loc) · 9.87 KB
/
softmax_sweep.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
import os
import csv
import argparse
from contextlib import nullcontext
import numpy as np
import time
import torch
import plotly.graph_objects as go
from model import GPT
from rich.console import Console
from rich.table import Table
# Load configuration
from gpt_conf import GPTConfig
# Argument parser setup
parser = argparse.ArgumentParser(description="GPT Timing Analysis")
parser.add_argument('--forward_only', action='store_true', help="Only perform forward pass to save memory")
args = parser.parse_args()
# -----------------------------------------------------------------------------
batch_size = 1
bias = False
real_data = True
seed = 1337
device = 'cuda' # examples: 'cpu', 'cuda', 'cuda:0', 'cuda:1', etc.
dtype = 'bfloat16' if torch.cuda.is_available() and torch.cuda.is_bf16_supported() else 'float16' # 'float32' or 'bfloat16' or 'float16'
use_gradient_checkpointing = True
profile = True
# List of softmax variants to test
softmax_variants = ["relumax", "softmax", "softplus"]
# Set of block sizes to sweep (including one warmup that we will drop later)
block_sizes = [16, 32, 64, 128, 256, 512, 768, 1024, 1548, 2048, 3072, 4096, 5120, 6144, 7168, 8196]
# Number of runs for averaging
num_runs = 5
# To store timing results
ln1_ln2_timing_results = {variant: {} for variant in softmax_variants}
forward_pass_timing_results = {variant: {} for variant in softmax_variants}
# Console for rich output
console = Console()
for variant in softmax_variants:
for block_size in block_sizes:
console.print(f"[bold yellow]Testing variant: {variant} with block size: {block_size}[/bold yellow]")
ln1_ln2_times = []
forward_pass_times = []
for run in range(num_runs):
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.backends.cuda.matmul.allow_tf32 = True # allow tf32 on matmul
torch.backends.cudnn.allow_tf32 = True # allow tf32 on cudnn
device_type = 'cuda' if 'cuda' in device else 'cpu' # for later use in torch.autocast
ptdtype = {'float32': torch.float32, 'bfloat16': torch.bfloat16, 'float16': torch.float16}[dtype]
ctx = nullcontext() if device_type == 'cpu' else torch.amp.autocast(device_type=device_type, dtype=ptdtype)
# data loading init
if real_data:
dataset = 'shakespeare'
data_dir = os.path.join('data', dataset)
train_data = np.memmap(os.path.join(data_dir, 'train.bin'), dtype=np.uint16, mode='r')
def get_batch(split):
data = train_data # note ignore split in benchmarking script
ix = torch.randint(len(data) - block_size, (batch_size,))
x = torch.stack([torch.from_numpy((data[i:i+block_size]).astype(np.int64)) for i in ix])
y = torch.stack([torch.from_numpy((data[i+1:i+1+block_size]).astype(np.int64)) for i in ix])
x, y = x.pin_memory().to(device, non_blocking=True), y.pin_memory().to(device, non_blocking=True)
return x, y
else:
# alternatively, if fixed data is desired to not care about data loading
x = torch.randint(50304, (batch_size, block_size), device=device)
y = torch.randint(50304, (batch_size, block_size), device=device)
get_batch = lambda split: (x, y)
# model init
gptconf = GPTConfig(
block_size = block_size, # how far back does the model look? i.e. context size
n_layer = 3, n_head = 12, n_embd = 768, # size of the model
softmax_variant_attn = variant,
disable_flash_attention = True,
strongermax_use_xmax = True,
strongermax_sum_to_1 = True,
dropout = 0, # for determinism
bias = bias,
)
model = GPT(gptconf)
model.to(device)
optimizer = model.configure_optimizers(weight_decay=1e-2, learning_rate=1e-4, betas=(0.9, 0.95), device_type=device_type)
# Profiling section
if profile:
for _ in range(num_runs):
X, Y = get_batch('train')
# Timing from the start of the forward pass to the end (logits retrieval)
forward_start = torch.cuda.Event(enable_timing=True)
forward_end = torch.cuda.Event(enable_timing=True)
# Timing between ln_1 and ln_2 within a block
ln1_start = torch.cuda.Event(enable_timing=True)
ln2_end = torch.cuda.Event(enable_timing=True)
with torch.no_grad() if args.forward_only else nullcontext():
forward_start.record()
with ctx:
tok_emb = model.transformer.wte(X) # Starting point
x = model.transformer.drop(tok_emb)
# Assuming we're focusing on the first block for ln_1 to ln_2 timing
block = model.transformer.h[0]
ln1_start.record()
x_ln1 = block.ln_1(x) # Timing starts after ln_1
x_attn = block.attn(x_ln1) # Attention
x = x + x_attn # Residual connection
x_ln2 = block.ln_2(x) # Timing ends after ln_2
ln2_end.record()
# Continue the forward pass
for b in model.transformer.h[1:]:
x = b(x)
logits = model.lm_head(x) # Final logits
forward_end.record()
torch.cuda.synchronize()
ln1_ln2_time = ln1_start.elapsed_time(ln2_end)
forward_pass_time = forward_start.elapsed_time(forward_end)
ln1_ln2_times.append(ln1_ln2_time)
forward_pass_times.append(forward_pass_time)
if not args.forward_only:
optimizer.zero_grad(set_to_none=True)
loss = torch.nn.functional.cross_entropy(logits.view(-1, logits.size(-1)), Y.view(-1), ignore_index=-1)
loss.backward()
optimizer.step()
# Calculate average times
avg_ln1_ln2_time = sum(ln1_ln2_times) / len(ln1_ln2_times)
avg_forward_pass_time = sum(forward_pass_times) / len(forward_pass_times)
# Store the results
ln1_ln2_timing_results[variant][block_size] = avg_ln1_ln2_time
forward_pass_timing_results[variant][block_size] = avg_forward_pass_time
# Remove the first block size from the results (warmup)
block_sizes = block_sizes[1:]
# Create Rich tables to display the results
ln1_ln2_table = Table(title="Avg LN1 to LN2 Time (ms)", caption="Variants on Rows, Block Sizes on Columns")
forward_pass_table = Table(title="Avg Forward Pass Time (ms)", caption="Variants on Rows, Block Sizes on Columns")
# Define columns for both tables
ln1_ln2_table.add_column("Softmax Variant", justify="center", style="cyan", no_wrap=True)
forward_pass_table.add_column("Softmax Variant", justify="center", style="cyan", no_wrap=True)
for block_size in block_sizes:
ln1_ln2_table.add_column(f"Block Size {block_size}", justify="center", style="green")
forward_pass_table.add_column(f"Block Size {block_size}", justify="center", style="green")
# Populate the tables with timing results
ln1_ln2_csv_data = []
forward_pass_csv_data = []
for variant in softmax_variants:
ln1_ln2_row = [variant]
forward_pass_row = [variant]
for block_size in block_sizes:
ln1_ln2_row.append(f"{ln1_ln2_timing_results[variant][block_size]:.4f}")
forward_pass_row.append(f"{forward_pass_timing_results[variant][block_size]:.4f}")
ln1_ln2_table.add_row(*ln1_ln2_row)
forward_pass_table.add_row(*forward_pass_row)
# Prepare CSV data
ln1_ln2_csv_data.append(ln1_ln2_row)
forward_pass_csv_data.append(forward_pass_row)
# Display the tables
console.print(ln1_ln2_table)
console.print(forward_pass_table)
# Save CSV
ln1_ln2_csv_file = 'ln1_ln2_timing_results.csv'
forward_pass_csv_file = 'forward_pass_timing_results.csv'
with open(ln1_ln2_csv_file, 'w', newline='') as f:
writer = csv.writer(f)
writer.writerow(['Softmax Variant'] + [f"Block Size {block_size}" for block_size in block_sizes])
writer.writerows(ln1_ln2_csv_data)
with open(forward_pass_csv_file, 'w', newline='') as f:
writer = csv.writer(f)
writer.writerow(['Softmax Variant'] + [f"Block Size {block_size}" for block_size in block_sizes])
writer.writerows(forward_pass_csv_data)
# Create Plotly plots
# Plot for Avg LN1 to LN2 Time
ln1_ln2_fig = go.Figure()
for variant in softmax_variants:
ln1_ln2_fig.add_trace(go.Scatter(
x=block_sizes,
y=[ln1_ln2_timing_results[variant][block_size] for block_size in block_sizes],
mode='lines+markers',
name=variant
))
ln1_ln2_fig.update_layout(
title="Avg LN1 to LN2 Time Across Block Sizes and Variants",
xaxis_title="Block Size",
yaxis_title="Avg LN1 to LN2 Time (ms)",
legend_title="Softmax Variant",
)
# Save the figure as a PNG file
ln1_ln2_fig.write_image("ln1_ln2_timing_plot.png")
# Plot for Avg Forward Pass Time
forward_pass_fig = go.Figure()
for variant in softmax_variants:
forward_pass_fig.add_trace(go.Scatter(
x=block_sizes,
y=[forward_pass_timing_results[variant][block_size] for block_size in block_sizes],
mode='lines+markers',
name=variant
))
forward_pass_fig.update_layout(
title="Avg Forward Pass Time Across Block Sizes and Variants",
xaxis_title="Block Size",
yaxis_title="Avg Forward Pass Time (ms)",
legend_title="Softmax Variant",
)
# Save the figure as a PNG file
forward_pass_fig.write_image("forward_pass_timing_plot.png")