-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathvrnn_train.py
70 lines (61 loc) · 2.84 KB
/
vrnn_train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
from math import pi
import os
from keras.layers import Input
from keras.layers import Lambda
from keras.layers import LSTM
from keras.layers import Dense
from keras.layers import TimeDistributed
from keras.layers import merge
from keras.models import Model
from keras.optimizers import Adam
from keras import backend as K
from callbacks import SavePeriodicCheckpoint
from config import parse_args
from utils import audio_amplitudes_gen
from utils import samples_per_epoch
from vrnn_model import build_vrnn
def train(train_dir, valid_dir=None, lstm_size=1000, num_steps=40,
z_dim=100, batch_size=32, fc_dim=400, wav_dim=200,
checkpoint_dir="vrnn_checkpoints", learning_rate=0.001, clip_grad=5.0,
num_epochs=50, save_every=5):
if not os.path.exists(checkpoint_dir):
os.mkdir(checkpoint_dir)
vae = build_vrnn(lstm_size=lstm_size, num_steps=num_steps, z_dim=z_dim,
batch_size=batch_size, fc_dim=fc_dim, wav_dim=wav_dim,
learning_rate=learning_rate, clip_grad=clip_grad)
filepath = os.path.join(checkpoint_dir, "weights-{epoch:02d}.hdf5")
checkpoint = SavePeriodicCheckpoint(filepath, monitor='val_loss', verbose=1,
n_epochs=save_every)
callbacks_list = [checkpoint]
train_gen = audio_amplitudes_gen(
wavdir=train_dir, num_steps=num_steps, batch_size=batch_size,
wav_dim=wav_dim)
n_train_per_epoch = samples_per_epoch(
wavdir=train_dir, batch_size=batch_size, num_steps=num_steps,
wav_dim=wav_dim)
if valid_dir is not None:
valid_gen = audio_amplitudes_gen(
wavdir=valid_dir, num_steps=num_steps, batch_size=batch_size,
wav_dim=wav_dim)
n_val_per_epoch = samples_per_epoch(
wavdir=valid_dir, batch_size=batch_size,
num_steps=num_steps, wav_dim=wav_dim)
vae.fit_generator(train_gen,
samples_per_epoch=batch_size*n_train_per_epoch,
verbose=2, nb_epoch=num_epochs,
validation_data=valid_gen,
nb_val_samples=batch_size*n_val_per_epoch,
callbacks=callbacks_list)
else:
vae.fit_generator(
train_gen,
samples_per_epoch=batch_size*n_train_per_epoch, verbose=2,
nb_epoch=num_epochs, callbacks=callbacks_list)
if __name__ == "__main__":
args = parse_args(mode="train")
train(train_dir=args.train_dir, valid_dir=args.valid_dir,
z_dim=args.z_dim, lstm_size=args.lstm_size, num_steps=args.num_steps,
checkpoint_dir=args.checkpoint_dir, batch_size=args.batch_size,
fc_dim=args.fc_dim, clip_grad=args.clip_grad,
learning_rate=args.learning_rate, num_epochs=args.num_epochs,
save_every=args.save_every, wav_dim=args.wav_dim)