forked from sandhya212/BISCUIT_SingleCell_IMM_ICML_2016
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathBISCUIT_main.R
executable file
·156 lines (115 loc) · 4.16 KB
/
BISCUIT_main.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
## 21st Dec 2016
## BISCUIT main and helper functions
## main()
## Code author SP
##
###
###
############## helper functions ##############
centralize.mat <- function(M){
n <- nrow(M)
Q <- matrix(-1/n, nrow=n, ncol = n)
diag(Q) <- diag(Q)+1
M <- Q %*% M %*% Q
M
}
######
center_colmeans <- function(x) {
xcenter = colMeans(x)
x - rep(xcenter, rep.int(nrow(x), ncol(x)))
}
######
norm_vec <- function(x) sqrt(sum(x^2))
######
getmode <- function(v) {
uniqv <- unique(v)
uniqv[which.max(tabulate(match(v, uniqv)))]
}
######
######### Projecting X
project.data <- function(data, dim_data){
S <- data %*% t(data)
Sc <- centralize.mat(S)
Sc <- 0.5*(Sc + t(Sc))
eig <- eigen(Sc)
w <- which(eig$values>0.01)
if(length(w) < dim_data){
w <- c(1:dim_data)
}
sq_diag <- diag(sqrt((eig$values)[w]))
sq_diag[is.na(sq_diag)] <- 0.001;
data_pca <- (eig$vectors)[,w] %*% sq_diag
}
############
######### Projecting X
fiedler.vector <- function(data){
s.eigen <- eigen(data) # the eigenvalues are in decreasing order so just extract the 2nd last one.
return(s.eigen$vectors[,(ncol(data) -1)])
}
############
####Fix the number of parallel subprocesses
sub_batch <- function(num_gene_batches){
flag1 <- TRUE
if(num_gene_batches==1){
num_gene_sub_batches <- 1
}else{
if(num_gene_batches %% 10 == 0 | (is.prim(num_gene_batches) & (num_gene_batches > 10)) ){
num_gene_sub_batches <- 10
}else{
while(flag1==TRUE){
for(count1 in 9:1){
if(num_gene_batches %% count1 ==0){
num_gene_sub_batches <- count1;
flag1 <- FALSE
break
}
}
}
}
}
return(sub_batch <- num_gene_sub_batches)
}
##########MDS scaling
mds.tau <- function(H)
{
n <- nrow(H)
P <- diag(n) - 1/n
return(-0.5 * P %*% H %*% P)
}
###### getting distinguishable colours for clusters #####
##ref: http://stackoverflow.com/questions/15282580/how-to-generate-a-number-of-most-distinctive-colors-in-r
##
qual_col_pals = brewer.pal.info[brewer.pal.info$category == 'qual',]
col_vector = unlist(mapply(brewer.pal, qual_col_pals$maxcolors, rownames(qual_col_pals))) #len = 74
num_col <- 40
#pie(rep(1,num_col), col=(col_vector[1:num_col]))
col_palette <- col_vector[1:num_col]; # or sample if you wish
###output directory creation
if( dir.exists(paste0(getwd(),"/", output_folder_name))){
file.rename(paste0(getwd(),"/", output_folder_name),paste0(getwd(),"/","BISCUIT_previous_run","/"))
}
if(! dir.exists(paste0(getwd(),"/",output_folder_name))){
dir.create(paste0(getwd(),"/",output_folder_name,"/"))
dir.create(paste0(getwd(),"/",output_folder_name,"/plots/"))
dir.create(paste0(getwd(),"/",output_folder_name,"/plots/Inferred_labels/"))
dir.create(paste0(getwd(),"/",output_folder_name,"/plots/Inferred_labels_per_step_per_batch/"))
dir.create(paste0(getwd(),"/",output_folder_name,"/plots/Inferred_alphas_betas/"))
dir.create(paste0(getwd(),"/",output_folder_name,"/plots/Inferred_Sigmas/"))
dir.create(paste0(getwd(),"/",output_folder_name,"/plots/Inferred_means/"))
dir.create(paste0(getwd(),"/",output_folder_name,"/plots/extras/"))
}
############## Run BISCUIT ##############
start_time_overall <- Sys.time()
#1) Prepare the input data. Explain what is input and what has to be the output.
source("BISCUIT_process_data.R");
#2) Main MCMC engine. Do not change anything. This runs in parallel where each parallel run takes in a matrix X of all cells and a gene batch i.e. dim(X) is numcells x gene_batch.
source("BISCUIT_IMM_Gibbs_MCMC_parallel.R")
#3) Postprocess MCMC chains from multiple parallel runs
source("BISCUIT_post_MCMC_genesplit_merge.R")
#4) Compute imputed data based on inferred variables and generate plots
source("BISCUIT_post_process.R")
########################################
#print(Sys.time() - start_time_overall)
curr_time <- Sys.time()
print(curr_time - start_time_overall)
write(paste('Overall run time: ',curr_time - start_time_overall),file=f1, append=TRUE)