-
Notifications
You must be signed in to change notification settings - Fork 33
/
Copy pathTransE.py
executable file
·36 lines (28 loc) · 1.74 KB
/
TransE.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
#Copyright (C) 2018 Seyed Mehran Kazemi, Licensed under the GPL V3; see: <https://www.gnu.org/licenses/gpl-3.0.en.html>
from tensor_factorizer import *
from reader import *
class TransE(TensorFactorizer):
def __init__(self, params, dataset="wn18"):
TensorFactorizer.__init__(self, model_name="TransE", loss_function="margin", params=params, dataset=dataset)
def setup_weights(self):
sqrt_size = 6.0 / math.sqrt(self.params.emb_size)
self.rel_emb = tf.get_variable(name="rel_emb", initializer=tf.random_uniform(shape=[self.num_rel, self.params.emb_size], minval=-sqrt_size, maxval=sqrt_size))
self.ent_emb = tf.get_variable(name="ent_emb", initializer=tf.random_uniform(shape=[self.num_ent, self.params.emb_size], minval=-sqrt_size, maxval=sqrt_size))
self.var_list = [self.rel_emb, self.ent_emb]
def define_regularization(self):
self.regularizer = tf.reduce_sum(tf.nn.relu(tf.square(tf.norm(self.ent_emb, axis=1, ord=2)) - 1.0))
def gather_train_embeddings(self):
self.ph_emb = tf.gather(self.ent_emb, self.ph)
self.pt_emb = tf.gather(self.ent_emb, self.pt)
self.nh_emb = tf.gather(self.ent_emb, self.nh)
self.nt_emb = tf.gather(self.ent_emb, self.nt)
self.r_emb = tf.gather(self.rel_emb, self.r)
def gather_test_embeddings(self):
self.h_emb = tf.gather(self.ent_emb, self.head)
self.r_emb = tf.gather(self.rel_emb, self.rel)
self.t_emb = tf.gather(self.ent_emb, self.tail)
def create_train_model(self):
self.pos_dissims = tf.norm(self.ph_emb + self.r_emb - self.pt_emb, axis=1, ord=self.params.p_norm)
self.neg_dissims = tf.norm(self.nh_emb + self.r_emb - self.nt_emb, axis=1, ord=self.params.p_norm)
def create_test_model(self):
self.dissims = tf.norm(self.h_emb + self.r_emb - self.t_emb, axis=1, ord=self.params.p_norm)