forked from ixaxaar/pytorch-dnc
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdnc.py
318 lines (267 loc) · 10.4 KB
/
dnc.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
import torch.nn as nn
import torch as T
from torch.autograd import Variable as var
import numpy as np
from torch.nn.utils.rnn import pad_packed_sequence as pad
from torch.nn.utils.rnn import pack_padded_sequence as pack
from torch.nn.utils.rnn import PackedSequence
from .util import *
from .memory import *
from torch.nn.init import orthogonal_, xavier_uniform_
class DNC(nn.Module):
def __init__(
self,
input_size,
hidden_size,
rnn_type='lstm',
num_layers=1,
num_hidden_layers=2,
bias=True,
batch_first=True,
dropout=0,
bidirectional=False,
nr_cells=5,
read_heads=2,
cell_size=10,
nonlinearity='tanh',
gpu_id=-1,
independent_linears=False,
share_memory=True,
debug=False,
clip=20
):
super(DNC, self).__init__()
# todo: separate weights and RNNs for the interface and output vectors
self.input_size = input_size
self.hidden_size = hidden_size
self.rnn_type = rnn_type
self.num_layers = num_layers
self.num_hidden_layers = num_hidden_layers
self.bias = bias
self.batch_first = batch_first
self.dropout = dropout
self.bidirectional = bidirectional
self.nr_cells = nr_cells
self.read_heads = read_heads
self.cell_size = cell_size
self.nonlinearity = nonlinearity
self.gpu_id = gpu_id
self.independent_linears = independent_linears
self.share_memory = share_memory
self.debug = debug
self.clip = clip
self.w = self.cell_size
self.r = self.read_heads
self.read_vectors_size = self.r * self.w
self.output_size = self.hidden_size
self.nn_input_size = self.input_size + self.read_vectors_size
self.nn_output_size = self.output_size + self.read_vectors_size
self.rnns = []
self.memories = []
for layer in range(self.num_layers):
if self.rnn_type.lower() == 'rnn':
self.rnns.append(nn.RNN((self.nn_input_size if layer == 0 else self.nn_output_size), self.output_size,
bias=self.bias, nonlinearity=self.nonlinearity, batch_first=True, dropout=self.dropout, num_layers=self.num_hidden_layers))
elif self.rnn_type.lower() == 'gru':
self.rnns.append(nn.GRU((self.nn_input_size if layer == 0 else self.nn_output_size),
self.output_size, bias=self.bias, batch_first=True, dropout=self.dropout, num_layers=self.num_hidden_layers))
if self.rnn_type.lower() == 'lstm':
self.rnns.append(nn.LSTM((self.nn_input_size if layer == 0 else self.nn_output_size),
self.output_size, bias=self.bias, batch_first=True, dropout=self.dropout, num_layers=self.num_hidden_layers))
setattr(self, self.rnn_type.lower() + '_layer_' + str(layer), self.rnns[layer])
# memories for each layer
if not self.share_memory:
self.memories.append(
Memory(
input_size=self.output_size,
mem_size=self.nr_cells,
cell_size=self.w,
read_heads=self.r,
gpu_id=self.gpu_id,
independent_linears=self.independent_linears
)
)
setattr(self, 'rnn_layer_memory_' + str(layer), self.memories[layer])
# only one memory shared by all layers
if self.share_memory:
self.memories.append(
Memory(
input_size=self.output_size,
mem_size=self.nr_cells,
cell_size=self.w,
read_heads=self.r,
gpu_id=self.gpu_id,
independent_linears=self.independent_linears
)
)
setattr(self, 'rnn_layer_memory_shared', self.memories[0])
# final output layer
self.output = nn.Linear(self.nn_output_size, self.input_size)
orthogonal_(self.output.weight)
if self.gpu_id != -1:
[x.cuda(self.gpu_id) for x in self.rnns]
[x.cuda(self.gpu_id) for x in self.memories]
self.output.cuda()
def _init_hidden(self, hx, batch_size, reset_experience):
# create empty hidden states if not provided
if hx is None:
hx = (None, None, None)
(chx, mhx, last_read) = hx
# initialize hidden state of the controller RNN
if chx is None:
h = cuda(T.zeros(self.num_hidden_layers, batch_size, self.output_size), gpu_id=self.gpu_id)
xavier_uniform_(h)
chx = [ (h, h) if self.rnn_type.lower() == 'lstm' else h for x in range(self.num_layers)]
# Last read vectors
if last_read is None:
last_read = cuda(T.zeros(batch_size, self.w * self.r), gpu_id=self.gpu_id)
# memory states
if mhx is None:
if self.share_memory:
mhx = self.memories[0].reset(batch_size, erase=reset_experience)
else:
mhx = [m.reset(batch_size, erase=reset_experience) for m in self.memories]
else:
if self.share_memory:
mhx = self.memories[0].reset(batch_size, mhx, erase=reset_experience)
else:
mhx = [m.reset(batch_size, h, erase=reset_experience) for m, h in zip(self.memories, mhx)]
return chx, mhx, last_read
def _debug(self, mhx, debug_obj):
if not debug_obj:
debug_obj = {
'memory': [],
'link_matrix': [],
'precedence': [],
'read_weights': [],
'write_weights': [],
'usage_vector': [],
}
debug_obj['memory'].append(mhx['memory'][0].data.cpu().numpy())
debug_obj['link_matrix'].append(mhx['link_matrix'][0][0].data.cpu().numpy())
debug_obj['precedence'].append(mhx['precedence'][0].data.cpu().numpy())
debug_obj['read_weights'].append(mhx['read_weights'][0].data.cpu().numpy())
debug_obj['write_weights'].append(mhx['write_weights'][0].data.cpu().numpy())
debug_obj['usage_vector'].append(mhx['usage_vector'][0].unsqueeze(0).data.cpu().numpy())
return debug_obj
def _layer_forward(self, input, layer, hx=(None, None), pass_through_memory=True):
(chx, mhx) = hx
# pass through the controller layer
input, chx = self.rnns[layer](input.unsqueeze(1), chx)
input = input.squeeze(1)
# clip the controller output
if self.clip != 0:
output = T.clamp(input, -self.clip, self.clip)
else:
output = input
# the interface vector
ξ = output
# pass through memory
if pass_through_memory:
if self.share_memory:
read_vecs, mhx = self.memories[0](ξ, mhx)
else:
read_vecs, mhx = self.memories[layer](ξ, mhx)
# the read vectors
read_vectors = read_vecs.view(-1, self.w * self.r)
else:
read_vectors = None
return output, (chx, mhx, read_vectors)
def forward(self, input, hx=(None, None, None), reset_experience=False, pass_through_memory=True):
# handle packed data
is_packed = type(input) is PackedSequence
if is_packed:
input, lengths = pad(input)
max_length = lengths[0]
else:
max_length = input.size(1) if self.batch_first else input.size(0)
lengths = [input.size(1)] * max_length if self.batch_first else [input.size(0)] * max_length
batch_size = input.size(0) if self.batch_first else input.size(1)
if not self.batch_first:
input = input.transpose(0, 1)
# make the data time-first
controller_hidden, mem_hidden, last_read = self._init_hidden(hx, batch_size, reset_experience)
# concat input with last read (or padding) vectors
inputs = [T.cat([input[:, x, :], last_read], 1) for x in range(max_length)]
# batched forward pass per element / word / etc
if self.debug:
viz = None
outs = [None] * max_length
read_vectors = None
# pass through time
for time in range(max_length):
# pass thorugh layers
for layer in range(self.num_layers):
# this layer's hidden states
chx = controller_hidden[layer]
m = mem_hidden if self.share_memory else mem_hidden[layer]
# pass through controller
outs[time], (chx, m, read_vectors) = \
self._layer_forward(inputs[time], layer, (chx, m), pass_through_memory)
# debug memory
if self.debug:
viz = self._debug(m, viz)
# store the memory back (per layer or shared)
if self.share_memory:
mem_hidden = m
else:
mem_hidden[layer] = m
controller_hidden[layer] = chx
if read_vectors is not None:
# the controller output + read vectors go into next layer
outs[time] = T.cat([outs[time], read_vectors], 1)
else:
outs[time] = T.cat([outs[time], last_read], 1)
inputs[time] = outs[time]
if self.debug:
viz = {k: np.array(v) for k, v in viz.items()}
viz = {k: v.reshape(v.shape[0], v.shape[1] * v.shape[2]) for k, v in viz.items()}
# pass through final output layer
inputs = [self.output(i) for i in inputs]
outputs = T.stack(inputs, 1 if self.batch_first else 0)
if is_packed:
outputs = pack(output, lengths)
if self.debug:
return outputs, (controller_hidden, mem_hidden, read_vectors), viz
else:
return outputs, (controller_hidden, mem_hidden, read_vectors)
def __repr__(self):
s = "\n----------------------------------------\n"
s += '{name}({input_size}, {hidden_size}'
if self.rnn_type != 'lstm':
s += ', rnn_type={rnn_type}'
if self.num_layers != 1:
s += ', num_layers={num_layers}'
if self.num_hidden_layers != 2:
s += ', num_hidden_layers={num_hidden_layers}'
if self.bias != True:
s += ', bias={bias}'
if self.batch_first != True:
s += ', batch_first={batch_first}'
if self.dropout != 0:
s += ', dropout={dropout}'
if self.bidirectional != False:
s += ', bidirectional={bidirectional}'
if self.nr_cells != 5:
s += ', nr_cells={nr_cells}'
if self.read_heads != 2:
s += ', read_heads={read_heads}'
if self.cell_size != 10:
s += ', cell_size={cell_size}'
if self.nonlinearity != 'tanh':
s += ', nonlinearity={nonlinearity}'
if self.gpu_id != -1:
s += ', gpu_id={gpu_id}'
if self.independent_linears != False:
s += ', independent_linears={independent_linears}'
if self.share_memory != True:
s += ', share_memory={share_memory}'
if self.debug != False:
s += ', debug={debug}'
if self.clip != 20:
s += ', clip={clip}'
s += ")\n" + super(DNC, self).__repr__() + \
"\n----------------------------------------\n"
return s.format(name=self.__class__.__name__, **self.__dict__)