forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_autograd_fallback.py
458 lines (378 loc) · 15.8 KB
/
test_autograd_fallback.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
# Owner(s): ["module: autograd"]
import contextlib
import warnings
import numpy as np
import torch
from torch.library import Library
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
TestCase,
)
@contextlib.contextmanager
def autograd_fallback_mode(mode):
prev = torch._C._get_autograd_fallback_mode()
try:
torch._C._set_autograd_fallback_mode(mode)
yield
finally:
torch._C._set_autograd_fallback_mode(prev)
class TestAutogradFallback(TestCase):
test_ns = "_test_autograd_fallback"
def tearDown(self):
if hasattr(torch.ops, self.test_ns):
delattr(torch.ops, self.test_ns)
if hasattr(self, "lib"):
del self.lib.m
del self.lib
def get_op(self, name):
return getattr(getattr(torch.ops, self.test_ns), name).default
def get_lib(self):
lib = Library(self.test_ns, "FRAGMENT")
self.lib = lib
return lib
@parametrize("mode", ("nothing", "warn"))
def test_no_grad(self, mode):
with autograd_fallback_mode(mode):
lib = self.get_lib()
lib.define("foo(Tensor a, Tensor b, int c) -> Tensor")
lib.impl("foo", lambda a, b, c: a + b + c, "CPU")
op = self.get_op("foo")
with warnings.catch_warnings():
warnings.simplefilter("error")
with torch.no_grad():
a = torch.randn([], requires_grad=True)
b = torch.randn([], requires_grad=True)
out = op(a, b, 1)
self.assertFalse(out.requires_grad)
with warnings.catch_warnings():
warnings.simplefilter("error")
a = torch.randn([])
b = torch.randn([])
out = op(a, b, 1)
self.assertFalse(out.requires_grad)
@parametrize("mode", ("nothing", "warn"))
def test_no_autograd_kernel(self, mode):
with autograd_fallback_mode(mode):
lib = self.get_lib()
lib.define("foo(Tensor a, Tensor b, int c) -> Tensor")
op = self.get_op("foo")
def foo_impl(a, b, c):
result = a.detach().numpy() + b.detach().numpy() + c
return torch.tensor(result)
lib.impl("foo", foo_impl, "CPU")
# Some inputs requiring grad
a = torch.randn([], requires_grad=False)
b = torch.randn([], requires_grad=True)
out = op(a, b, 1).sum()
with self._check_ctx(mode, mode_nothing_raises=True):
out.backward()
self.assertIsNone(b.grad)
def _check_ctx(self, mode, *, mode_nothing_raises=False):
if mode == "warn":
return self.assertWarnsRegex(
UserWarning, "an autograd kernel was not registered"
)
assert mode == "nothing"
if mode_nothing_raises:
return self.assertRaisesRegex(RuntimeError, "does not require grad")
return contextlib.nullcontext()
@parametrize("mode", ("nothing", "warn"))
def test_no_autograd_kernel_inplace(self, mode):
with autograd_fallback_mode(mode):
# input modified in-place gets returned as output
lib = self.get_lib()
lib.define("foo(Tensor(a!) self, Tensor(b!) y) -> (Tensor(a!), Tensor(b!))")
op = self.get_op("foo")
def foo_impl(x, y):
with torch.no_grad():
x.sin_()
y.cos_()
return x, y
lib.impl("foo", foo_impl, "CPU")
x = torch.randn(3, requires_grad=True)
w = x.clone()
v = x.clone()
y0 = w[0]
y1 = v[1]
z0, z1 = op(y0, y1)
for tensor in [w, v, z0, z1, y0, y1]:
with self._check_ctx(mode):
tensor.sum().backward(retain_graph=True)
# no outputs: we don't do anything. Maybe we should in the future.
# This is not a common failure mode.
lib.define("bar(Tensor(a!) self) -> ()")
op = self.get_op("bar")
def bar_impl(x):
with torch.no_grad():
x.sin_()
lib.impl("bar", bar_impl, "CPU")
with warnings.catch_warnings():
warnings.simplefilter("error")
x = torch.randn([], requires_grad=True)
y = x.clone()
z = op(y)
y.backward()
self.assertEqual(x.grad, torch.ones_like(x))
@parametrize("mode", ("nothing", "warn"))
def test_cpu_return_self(self, mode):
with autograd_fallback_mode(mode):
# To be clear, none of these situations are OK and will lead
# to other problems down the line. We're testing them because
# it is fairly common to actually do these things.
lib = Library(self.test_ns, "FRAGMENT")
lib.define("foo(Tensor self) -> Tensor")
lib.impl("foo", lambda x: x, "CPU")
op = self.get_op("foo")
x = torch.randn(3, requires_grad=True)
y = op(x).sum()
with self._check_ctx(mode):
y.backward()
self.assertEqual(x.grad, torch.ones_like(x))
lib.define("bar(Tensor(a!) self) -> Tensor(a!)")
lib.impl("bar", lambda x: x, "CPU")
op = self.get_op("bar")
x = torch.randn(3, requires_grad=True)
y = op(x).sum()
with self._check_ctx(mode):
y.backward()
self.assertEqual(x.grad, torch.ones_like(x))
@parametrize("mode", ("nothing", "warn"))
def test_composite_registered_to_cpu(self, mode):
with autograd_fallback_mode(mode):
lib = Library(self.test_ns, "FRAGMENT")
lib.define("foo(Tensor self) -> Tensor")
lib.impl("foo", lambda x: x.sin().sum(), "CPU")
op = self.get_op("foo")
x = torch.randn(3, requires_grad=True)
y = op(x)
with self._check_ctx(mode):
y.backward()
self.assertEqual(x.grad, x.cos())
@parametrize("mode", ("nothing", "warn"))
def test_autograd_function_registered_to_cpu(self, mode):
with autograd_fallback_mode(mode):
lib = Library(self.test_ns, "FRAGMENT")
lib.define("foo(Tensor self) -> Tensor")
class NumpySin(torch.autograd.Function):
@staticmethod
def forward(ctx, x):
ctx.save_for_backward(x)
return torch.tensor(np.sin(x.cpu().numpy()))
@staticmethod
def backward(ctx, gx):
(x,) = ctx.saved_tensors
return gx * x.cos()
lib.impl("foo", NumpySin.apply, "CPU")
op = self.get_op("foo")
x = torch.randn(3, requires_grad=True)
y = op(x).sum()
with self._check_ctx(mode):
y.backward()
self.assertEqual(x.grad, x.cos())
@parametrize("mode", ("nothing", "warn"))
def test_inplace_autograd_function_registered_to_cpu(self, mode):
with autograd_fallback_mode(mode):
lib = Library(self.test_ns, "FRAGMENT")
lib.define("foo(Tensor(a!) self) -> Tensor(a!)")
class NumpySin_(torch.autograd.Function):
@staticmethod
def forward(ctx, x):
ctx.save_for_backward(x.clone())
x_np = x.detach().numpy()
np.sin(x_np, out=x_np)
ctx.mark_dirty(x)
return x
@staticmethod
def backward(ctx, gx):
(x,) = ctx.saved_tensors
return gx * x.cos()
lib.impl("foo", NumpySin_.apply, "CPU")
op = self.get_op("foo")
x = torch.randn(3, requires_grad=True)
z = x.clone()
w = z[0]
y = op(w)
expected = torch.zeros_like(x)
expected[0] = x[0].cos()
with self._check_ctx(mode):
(gx,) = torch.autograd.grad(y, x, torch.ones_like(y), retain_graph=True)
self.assertEqual(gx, expected)
expected = torch.ones_like(x)
expected[0] = x[0].cos()
with self._check_ctx(mode):
(gx,) = torch.autograd.grad(z, x, torch.ones_like(z))
self.assertEqual(gx, expected)
@parametrize("mode", ("nothing", "warn"))
def test_inplace_on_tensor_that_does_not_require_grad(self, mode):
# We don't do anything special (that is, we don't rebase history).
# See NOTE [autograd fallback and in-place operations] for why
with autograd_fallback_mode(mode):
lib = Library(self.test_ns, "FRAGMENT")
# Correct usage of (a!)
lib.define("foo(Tensor(a!) self, Tensor other) -> Tensor(a!)")
def foo_impl(x, y):
x_d = x.detach()
y = y.detach()
x_d.add_(y)
return x
lib.impl("foo", foo_impl, "CPU")
foo = self.get_op("foo")
# Incorrect usage of (a!): user doesn't return tensor as-is
lib.define("bar(Tensor(a!) self, Tensor other) -> Tensor(a!)")
def bar_impl(x, y):
x_d = x.detach()
y = y.detach()
x_d.add_(y)
return x_d.clone()
lib.impl("bar", bar_impl, "CPU")
bar = self.get_op("bar")
# User mutated input tensor but didn't return it.
lib.define("baz(Tensor(a!) self, Tensor other) -> ()")
def baz_impl(x, y):
x_d = x.detach()
y = y.detach()
x_d.add_(y)
lib.impl("baz", baz_impl, "CPU")
baz = self.get_op("baz")
# Test in-place on non-view
for op in (foo, bar, baz):
x = torch.randn(3)
y = torch.randn(3, requires_grad=True)
with self.assertRaisesRegex(RuntimeError, "does not require grad"):
z = x.clone()
op(z, y)
torch.autograd.grad(z, y, torch.ones_like(z), allow_unused=True)
# Test in-place on view
for op in (foo, bar, baz):
x = torch.randn(3)
y = torch.randn(3, requires_grad=True)
with self.assertRaisesRegex(RuntimeError, "does not require grad"):
z = x[:]
op(z, y)
torch.autograd.grad(z, x, torch.ones_like(z), allow_unused=True)
@parametrize("mode", ("nothing", "warn"))
def test_post_autograd_returns_leaf(self, mode):
with autograd_fallback_mode(mode):
lib = self.get_lib()
lib.define("foo(Tensor a) -> (Tensor, Tensor)")
op = self.get_op("foo")
lib.impl(
"foo", lambda a: (a.clone(), a.clone().detach().requires_grad_()), "CPU"
)
x = torch.randn(3, requires_grad=True)
y, z = op(x)
with self._check_ctx(mode):
z.sum().backward()
@parametrize("mode", ("nothing", "warn"))
def test_undefined_inputs_outputs(self, mode):
with autograd_fallback_mode(mode):
lib = self.get_lib()
lib.define("foo(Tensor a, Tensor b) -> (Tensor, Tensor)")
op = self.get_op("foo")
def foo_impl(a, b):
return None, b.clone()
lib.impl("foo", foo_impl, "CPU")
x = torch.randn(3, requires_grad=True)
# NB: PyTorch dispatcher treats "None" as undefined Tensor.
y, z = op(None, x)
with self._check_ctx(mode):
z.sum().backward()
@parametrize("mode", ("nothing", "warn"))
def test_undefined_grads(self, mode):
with autograd_fallback_mode(mode):
lib = self.get_lib()
lib.define("foo(Tensor a, Tensor b) -> (Tensor, Tensor)")
op = self.get_op("foo")
def foo_impl(a, b):
return a.sin(), b.cos()
lib.impl("foo", foo_impl, "CPU")
x = torch.randn(3, requires_grad=True)
y = torch.randn(3)
w, z = op(x, y)
w = torch._C._functions.UndefinedGrad()(w)
z = torch._C._functions.UndefinedGrad()(z)
with self._check_ctx(mode):
(z + w).sum().backward()
@parametrize("mode", ("nothing", "warn"))
def test_base_does_not_require_grad(self, mode):
with autograd_fallback_mode(mode):
lib = self.get_lib()
lib.define("foo(Tensor(a!) x) -> Tensor(a!)")
op = self.get_op("foo")
def foo_impl(a):
with torch.no_grad():
return a.zero_()
lib.impl("foo", foo_impl, "CPU")
x = torch.randn(3)
y = x[:]
y.requires_grad_()
w = y[:]
self.assertTrue(w._base is x)
# Hook should be registered on w, but not w._base
op(w)
with self._check_ctx(mode):
w.sum().backward()
@parametrize("mode", ("nothing", "warn"))
def test_post_autograd_returns_mix_of_requires_grad_tensors(self, mode):
with autograd_fallback_mode(mode):
lib = self.get_lib()
lib.define("foo(Tensor a, Tensor b) -> (Tensor, Tensor, Tensor)")
op = self.get_op("foo")
def foo_impl(a, b):
with torch.no_grad():
x = a.clone()
z = b.clone()
y = a * b
return x, y, z
lib.impl("foo", foo_impl, "CPU")
a = torch.randn(3, requires_grad=True)
b = torch.randn(3, requires_grad=True)
x, y, z = op(a, b)
with self._check_ctx(mode, mode_nothing_raises=True):
torch.autograd.grad(
x, (a, b), torch.ones_like(x), allow_unused=True, retain_graph=True
)
with self._check_ctx(mode, mode_nothing_raises=False):
torch.autograd.grad(
y, (a, b), torch.ones_like(y), allow_unused=True, retain_graph=True
)
with self._check_ctx(mode, mode_nothing_raises=True):
torch.autograd.grad(
z, (a, b), torch.ones_like(z), allow_unused=True, retain_graph=True
)
@parametrize("mode", ("nothing", "warn"))
def test_supports_tensor_lists(self, mode):
with autograd_fallback_mode(mode):
lib = self.get_lib()
lib.define("foo(Tensor[] a) -> Tensor[]")
op = self.get_op("foo")
def foo_impl(a):
x, y, z = a
with torch.no_grad():
return x + y + z, x * y * z
lib.impl("foo", foo_impl, "CPU")
x = torch.randn(3, requires_grad=True)
y = torch.randn(1, requires_grad=True)
z = torch.randn(2, 1, requires_grad=True)
a, b = op([x, y, z])
with self._check_ctx(mode, mode_nothing_raises=True):
torch.autograd.grad(
a,
(x, y, z),
torch.ones_like(a),
allow_unused=True,
retain_graph=True,
)
with self._check_ctx(mode, mode_nothing_raises=True):
torch.autograd.grad(
b,
(x, y, z),
torch.ones_like(b),
allow_unused=True,
retain_graph=True,
)
instantiate_parametrized_tests(TestAutogradFallback)
if __name__ == "__main__":
run_tests()