forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_cuda_primary_ctx.py
110 lines (79 loc) · 4.12 KB
/
test_cuda_primary_ctx.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
# Owner(s): ["module: cuda"]
import torch
from torch.testing._internal.common_utils import TestCase, run_tests, skipIfRocmVersionLessThan, NoTest
from torch.testing._internal.common_cuda import TEST_CUDA, TEST_MULTIGPU
import sys
import unittest
# NOTE: this needs to be run in a brand new process
if not TEST_CUDA:
print('CUDA not available, skipping tests', file=sys.stderr)
TestCase = NoTest # noqa: F811
@torch.testing._internal.common_utils.markDynamoStrictTest
class TestCudaPrimaryCtx(TestCase):
CTX_ALREADY_CREATED_ERR_MSG = (
"Tests defined in test_cuda_primary_ctx.py must be run in a process "
"where CUDA contexts are never created. Use either run_test.py or add "
"--subprocess to run each test in a different subprocess.")
@skipIfRocmVersionLessThan((4, 4, 21504))
def setUp(self):
for device in range(torch.cuda.device_count()):
# Ensure context has not been created beforehand
self.assertFalse(torch._C._cuda_hasPrimaryContext(device), TestCudaPrimaryCtx.CTX_ALREADY_CREATED_ERR_MSG)
@unittest.skipIf(not TEST_MULTIGPU, "only one GPU detected")
def test_str_repr(self):
x = torch.randn(1, device='cuda:1')
# We should have only created context on 'cuda:1'
self.assertFalse(torch._C._cuda_hasPrimaryContext(0))
self.assertTrue(torch._C._cuda_hasPrimaryContext(1))
str(x)
repr(x)
# We should still have only created context on 'cuda:1'
self.assertFalse(torch._C._cuda_hasPrimaryContext(0))
self.assertTrue(torch._C._cuda_hasPrimaryContext(1))
@unittest.skipIf(not TEST_MULTIGPU, "only one GPU detected")
def test_copy(self):
x = torch.randn(1, device='cuda:1')
# We should have only created context on 'cuda:1'
self.assertFalse(torch._C._cuda_hasPrimaryContext(0))
self.assertTrue(torch._C._cuda_hasPrimaryContext(1))
y = torch.randn(1, device='cpu')
y.copy_(x)
# We should still have only created context on 'cuda:1'
self.assertFalse(torch._C._cuda_hasPrimaryContext(0))
self.assertTrue(torch._C._cuda_hasPrimaryContext(1))
@unittest.skipIf(not TEST_MULTIGPU, "only one GPU detected")
def test_pin_memory(self):
x = torch.randn(1, device='cuda:1')
# We should have only created context on 'cuda:1'
self.assertFalse(torch._C._cuda_hasPrimaryContext(0))
self.assertTrue(torch._C._cuda_hasPrimaryContext(1))
self.assertFalse(x.is_pinned())
# We should still have only created context on 'cuda:1'
self.assertFalse(torch._C._cuda_hasPrimaryContext(0))
self.assertTrue(torch._C._cuda_hasPrimaryContext(1))
x = torch.randn(3, device='cpu').pin_memory()
# We should still have only created context on 'cuda:1'
self.assertFalse(torch._C._cuda_hasPrimaryContext(0))
self.assertTrue(torch._C._cuda_hasPrimaryContext(1))
self.assertTrue(x.is_pinned())
# We should still have only created context on 'cuda:1'
self.assertFalse(torch._C._cuda_hasPrimaryContext(0))
self.assertTrue(torch._C._cuda_hasPrimaryContext(1))
x = torch.randn(3, device='cpu', pin_memory=True)
# We should still have only created context on 'cuda:1'
self.assertFalse(torch._C._cuda_hasPrimaryContext(0))
self.assertTrue(torch._C._cuda_hasPrimaryContext(1))
x = torch.zeros(3, device='cpu', pin_memory=True)
# We should still have only created context on 'cuda:1'
self.assertFalse(torch._C._cuda_hasPrimaryContext(0))
self.assertTrue(torch._C._cuda_hasPrimaryContext(1))
x = torch.empty(3, device='cpu', pin_memory=True)
# We should still have only created context on 'cuda:1'
self.assertFalse(torch._C._cuda_hasPrimaryContext(0))
self.assertTrue(torch._C._cuda_hasPrimaryContext(1))
x = x.pin_memory()
# We should still have only created context on 'cuda:1'
self.assertFalse(torch._C._cuda_hasPrimaryContext(0))
self.assertTrue(torch._C._cuda_hasPrimaryContext(1))
if __name__ == '__main__':
run_tests()