forked from shawntan/rnn-experiment
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy path8_autoencoder.py
45 lines (38 loc) · 1.29 KB
/
8_autoencoder.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
import math
import theano
import theano.tensor as T
import numpy as np
import utils as U
from numpy_hinton import print_arr
def build_network(input_size,hidden_size):
X = T.imatrix('X')
W_input_to_hidden = U.create_shared(U.initial_weights(input_size,hidden_size))
W_hidden_to_output = U.create_shared(U.initial_weights(hidden_size,input_size))
b_output = U.create_shared(U.initial_weights(input_size))
hidden = T.nnet.sigmoid(T.dot(X,W_input_to_hidden))
output = T.nnet.softmax(T.dot(hidden,W_input_to_hidden.T) + b_output)
parameters = [W_input_to_hidden,b_output]
return X,output,parameters
def build_error(X,output,params):
return T.mean((X - output)**2) + sum(0.0001*T.sum(p**2) for p in params)
if __name__ == '__main__':
X,output,parameters = build_network(8,3)
error = build_error(X,output,parameters)
grads = T.grad(error,wrt=parameters)
updates = [ (W,W-grad) for W,grad in zip(parameters,grads) ]
train = theano.function(
inputs=[X],
outputs=error,
updates=updates
)
test = theano.function(
inputs=[X],
outputs=output,
)
data = np.eye(8,dtype=np.int32)
# data = np.vstack((data,))
for _ in xrange(100000):
np.random.shuffle(data)
print train(data)
print_arr(test(np.eye(8,dtype=np.int32)))
print_arr(1/(1 + np.exp(-parameters[0].get_value())),1)