-
Notifications
You must be signed in to change notification settings - Fork 23
/
Copy pathmain.py
687 lines (597 loc) · 28.8 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
'''
This code is based on the official PyTorch ImageNet training example 'main.py'. Commit ID: 69d2798, 04/23/2020.
URL: https://github.com/pytorch/examples/tree/master/imagenet
Major modified parts will be indicated by '@mst' mark.
Questions to @mingsun-tse ([email protected]).
'''
import argparse
import os
import random
import shutil
import time
import warnings
import torch
import torch.nn as nn
import torch.nn.parallel
import torch.backends.cudnn as cudnn
import torch.distributed as dist
import torch.optim
import torch.multiprocessing as mp
import torch.utils.data
import torch.utils.data.distributed
import torchvision.transforms as transforms
import torchvision.datasets as datasets
import torchvision.models as models
# --- @mst
import copy
import numpy as np
from importlib import import_module
from data import Data
from logger import Logger
from utils import get_n_params, get_n_flops, get_n_params_, get_n_flops_, PresetLRScheduler, Timer
from utils import add_noise_to_model, compute_jacobian
from model import model_dict, is_single_branch
from data import num_classes_dict, img_size_dict
from pruner import pruner_dict
from option import args
pjoin = os.path.join
logger = Logger(args)
logprint = logger.log_printer.logprint
accprint = logger.log_printer.accprint
netprint = logger.netprint
timer = Timer(args.epochs)
# ---
def main():
# @mst: move this to above, won't influence the original functions
# args = parser.parse_args()
if args.seed is not None:
random.seed(args.seed)
torch.manual_seed(args.seed)
cudnn.deterministic = True
warnings.warn('You have chosen to seed training. '
'This will turn on the CUDNN deterministic setting, '
'which can slow down your training considerably! '
'You may see unexpected behavior when restarting '
'from checkpoints.')
if args.gpu is not None:
warnings.warn('You have chosen a specific GPU. This will completely '
'disable data parallelism.')
if args.dist_url == "env://" and args.world_size == -1:
args.world_size = int(os.environ["WORLD_SIZE"])
args.distributed = args.world_size > 1 or args.multiprocessing_distributed
ngpus_per_node = torch.cuda.device_count()
if args.multiprocessing_distributed:
# Since we have ngpus_per_node processes per node, the total world_size
# needs to be adjusted accordingly
args.world_size = ngpus_per_node * args.world_size
# Use torch.multiprocessing.spawn to launch distributed processes: the
# main_worker process function
mp.spawn(main_worker, nprocs=ngpus_per_node, args=(ngpus_per_node, args))
else:
# Simply call main_worker function
main_worker(args.gpu, ngpus_per_node, args)
def main_worker(gpu, ngpus_per_node, args):
global best_acc1, best_acc1_epoch
args.gpu = gpu
if args.gpu is not None:
logprint("Use GPU: {} for training".format(args.gpu))
if args.distributed:
if args.dist_url == "env://" and args.rank == -1:
args.rank = int(os.environ["RANK"])
if args.multiprocessing_distributed:
# For multiprocessing distributed training, rank needs to be the
# global rank among all the processes
args.rank = args.rank * ngpus_per_node + gpu
dist.init_process_group(backend=args.dist_backend, init_method=args.dist_url,
world_size=args.world_size, rank=args.rank)
# create model
num_classes = num_classes_dict[args.dataset]
img_size = img_size_dict[args.dataset]
num_channels = 1 if args.dataset == 'mnist' else 3
if args.dataset in ["imagenet", "imagenet_subset_200"]:
if args.pretrained:
logprint("=> using pre-trained model '{}'".format(args.arch))
model = models.__dict__[args.arch](num_classes=num_classes, pretrained=True)
else:
logprint("=> creating model '{}'".format(args.arch))
model = models.__dict__[args.arch](num_classes=num_classes)
else: # @mst: added non-imagenet models
model = model_dict[args.arch](num_classes=num_classes, num_channels=num_channels, use_bn=args.use_bn)
# @mst: save the model after initialization if necessary
if args.save_init_model:
state = {
'arch': args.arch,
'model': model,
'state_dict': model.state_dict(),
'ExpID': logger.ExpID,
}
save_model(state, mark='init')
if args.distributed:
# For multiprocessing distributed, DistributedDataParallel constructor
# should always set the single device scope, otherwise,
# DistributedDataParallel will use all available devices.
if args.gpu is not None:
torch.cuda.set_device(args.gpu)
model.cuda(args.gpu)
# When using a single GPU per process and per
# DistributedDataParallel, we need to divide the batch size
# ourselves based on the total number of GPUs we have
args.batch_size = int(args.batch_size / ngpus_per_node)
args.workers = int((args.workers + ngpus_per_node - 1) / ngpus_per_node)
model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.gpu])
else:
model.cuda()
# DistributedDataParallel will divide and allocate batch_size to all
# available GPUs if device_ids are not set
model = torch.nn.parallel.DistributedDataParallel(model)
elif args.gpu is not None:
torch.cuda.set_device(args.gpu)
model = model.cuda(args.gpu)
else:
# DataParallel will divide and allocate batch_size to all available GPUs
if args.arch.startswith('alexnet') or args.arch.startswith('vgg'):
model.features = torch.nn.DataParallel(model.features)
model.cuda()
else:
model = torch.nn.DataParallel(model).cuda()
# @mst: load the unpruned model for pruning
# This may be useful for the non-imagenet cases where we use our pretrained models
if args.base_model_path:
ckpt = torch.load(args.base_model_path)
if 'model' in ckpt:
model = ckpt['model']
model.load_state_dict(ckpt['state_dict'])
logprint("==> Load pretrained model successfully: '%s'" % args.base_model_path)
# @mst: print base model arch
netprint(model, comment='base model arch')
# define loss function (criterion) and optimizer
criterion = nn.CrossEntropyLoss().cuda(args.gpu)
optimizer = torch.optim.SGD(model.parameters(), args.lr,
momentum=args.momentum,
weight_decay=args.weight_decay) # @mst: This solver is not be really used. We will use our own.
# optionally resume from a checkpoint
# @mst: we will use our option '--resume_path', keep this simply for back-compatibility
best_acc1, best_acc1_epoch = 0, 0
if args.resume:
if os.path.isfile(args.resume):
logprint("=> loading checkpoint '{}'".format(args.resume))
if args.gpu is None:
checkpoint = torch.load(args.resume)
else:
# Map model to be loaded to specified single gpu.
loc = 'cuda:{}'.format(args.gpu)
checkpoint = torch.load(args.resume, map_location=loc)
args.start_epoch = checkpoint['epoch']
best_acc1 = checkpoint['best_acc1']
if args.gpu is not None:
# best_acc1 may be from a checkpoint from a different GPU
best_acc1 = best_acc1.to(args.gpu)
model.load_state_dict(checkpoint['state_dict'])
optimizer.load_state_dict(checkpoint['optimizer'])
logprint("=> loaded checkpoint '{}' (epoch {})"
.format(args.resume, checkpoint['epoch']))
else:
logprint("=> no checkpoint found at '{}'".format(args.resume))
cudnn.benchmark = True
# Data loading code
train_sampler = None
if args.dataset not in ['imagenet', 'imagenet_subset_200']:
loader = Data(args)
train_loader = loader.train_loader
val_loader = loader.test_loader
else:
traindir = os.path.join(args.data_path, args.dataset, 'train')
folder = 'val3' if args.debug else 'val' # @mst
valdir = os.path.join(args.data_path, args.dataset, folder)
normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225])
train_dataset = datasets.ImageFolder(
traindir,
transforms.Compose([
transforms.RandomResizedCrop(224),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
normalize,
]))
if args.distributed:
train_sampler = torch.utils.data.distributed.DistributedSampler(train_dataset)
train_loader = torch.utils.data.DataLoader(
train_dataset, batch_size=args.batch_size, shuffle=(train_sampler is None),
num_workers=args.workers, pin_memory=True, sampler=train_sampler)
val_loader = torch.utils.data.DataLoader(
datasets.ImageFolder(valdir, transforms.Compose([
transforms.Resize(256),
transforms.CenterCrop(224),
transforms.ToTensor(),
normalize,
])),
batch_size=args.batch_size, shuffle=False,
num_workers=args.workers, pin_memory=True)
test_set = datasets.ImageFolder(valdir,
transforms.Compose([
transforms.Resize(256),
transforms.CenterCrop(224),
transforms.ToTensor(),
normalize,
]))
print('number of test example: %d' % len(test_set))
# --- @mst: Structured pruning is basically equivalent to providing a new weight initialization before finetune,
# so just before training, conduct pruning to obtain a new model.
if args.method:
if args.dataset in ['imagenet', 'imagenet_subset_200']:
# imagenet training costs too much time, so we use a smaller batch size for pruning training
train_loader_prune = torch.utils.data.DataLoader(
train_dataset, batch_size=args.batch_size_prune, shuffle=(train_sampler is None),
num_workers=args.workers, pin_memory=True, sampler=train_sampler)
else:
train_loader_prune = loader.train_loader_prune
# get the original unpruned model statistics
# n_params_original = get_n_params(model) # old imple, deprecated
# n_flops_original = get_n_flops(model, input_res=img_size, n_channel=num_channels)
n_params_original_v2 = get_n_params_(model) # test new func, the old one will be removed
n_flops_original_v2 = get_n_flops_(model, img_size=img_size, n_channel=num_channels) # test new func, the old one will be removed
prune_state, pruner = '', None
if args.resume_path:
state = torch.load(args.resume_path)
prune_state = state['prune_state'] # finetune or update_reg or stabilize_reg
if prune_state == 'finetune':
model = state['model'].cuda()
model.load_state_dict(state['state_dict'])
if args.arch.startswith('lenet'):
logprint('==> Using Adam optimizer')
optimizer = torch.optim.Adam(model.parameters(), args.lr)
else:
logprint('==> Using SGD optimizer')
optimizer = torch.optim.SGD(model.parameters(), args.lr,
momentum=args.momentum,
weight_decay=args.weight_decay)
optimizer.load_state_dict(state['optimizer'])
args.start_epoch = state['epoch']
logprint("==> Load pretrained model successfully: '{}'. Epoch = {}. prune_state = '{}'".format(
args.resume_path, args.start_epoch, prune_state))
if args.wg == 'weight':
global mask
if args.directly_ft_weights:
state = torch.load(args.directly_ft_weights)
model = state['model'].cuda()
model.load_state_dict(state['state_dict'])
prune_state = 'finetune'
logprint("==> load pretrained model successfully: '{}'. Epoch = {}. prune_state = '{}'".format(
args.directly_ft_weights, args.start_epoch, prune_state))
if 'mask' in state:
mask = state['mask']
apply_mask_forward(model)
logprint('==> mask restored')
if prune_state != 'finetune':
class passer: pass # to pass arguments
passer.test = validate
passer.finetune = finetune
passer.train_loader = train_loader_prune
passer.test_loader = val_loader
passer.save = save_model
passer.criterion = criterion
passer.train_sampler = train_sampler
passer.pruner = pruner
passer.args = args
passer.is_single_branch = is_single_branch
pruner = pruner_dict[args.method].Pruner(model, args, logger, passer)
model = pruner.prune() # get the pruned model
if args.wg == 'weight':
mask = pruner.mask
apply_mask_forward(model)
logprint('==> zero out pruned weight before finetune')
# get the statistics of pruned model
n_params_now_v2 = get_n_params_(model)
n_flops_now_v2 = get_n_flops_(model, img_size=img_size, n_channel=num_channels)
# logprint("==> n_params_original: {:>7.4f}M, n_flops_original: {:>7.4f}G".format(n_params_original, n_flops_original))
logprint("==> n_params_original_v2: {:>7.4f}M, n_flops_original_v2: {:>7.4f}G".format(n_params_original_v2/1e6, n_flops_original_v2/1e9))
logprint("==> n_params_now_v2: {:>7.4f}M, n_flops_now_v2: {:>7.4f}G".format(n_params_now_v2/1e6, n_flops_now_v2/1e9))
ratio_param = (n_params_original_v2 - n_params_now_v2) / n_params_original_v2
ratio_flops = (n_flops_original_v2 - n_flops_now_v2) / n_flops_original_v2
compression_ratio = 1.0 / (1 - ratio_param)
speedup_ratio = 1.0 / (1 - ratio_flops)
logprint("==> reduction ratio -- params: {:>5.2f}% (compression {:>.2f}x), flops: {:>5.2f}% (speedup {:>.2f}x)".format(ratio_param*100, compression_ratio, ratio_flops*100, speedup_ratio))
# test and save just pruned model
netprint(model, comment='model that was just pruned')
if prune_state != 'finetune':
t1 = time.time()
acc1, acc5, loss_test = validate(val_loader, model, criterion, args)
if args.dataset != 'imagenet': # too costly, not test for now
acc1_train, acc5_train, loss_train = validate(train_loader, model, criterion, args, noisy_model_ensemble=args.model_noise_std)
else:
acc1_train, acc5_train, loss_train = -1, -1, -1
accprint("Acc1 %.4f Acc5 %.4f Loss_test %.4f | Acc1_train %.4f Acc5_train %.4f Loss_train %.4f | (test_time %.2fs) Just got pruned model, about to finetune" %
(acc1, acc5, loss_test, acc1_train, acc5_train, loss_train, time.time()-t1))
state = {'arch': args.arch,
'model': model,
'state_dict': model.state_dict(),
'acc1': acc1,
'acc5': acc5,
'ExpID': logger.ExpID,
'pruned_wg': pruner.pruned_wg,
'kept_wg': pruner.kept_wg,
}
if args.wg == 'weight':
state['mask'] = mask
save_model(state, mark="just_finished_prune")
# ---
# check Jacobian singular value (JSV)
if args.check_jsv_loop:
jsv = []
for i, (images, target) in enumerate(train_loader):
if i < args.check_jsv_loop:
images, target = images.cuda(), target.cuda()
batch_size = images.size(0)
images.requires_grad = True # for Jacobian computation
output = model(images)
jacobian = compute_jacobian(images, output) # shape [batch_size, num_classes, num_channels, input_width, input_height]
jacobian = jacobian.view(batch_size, num_classes, -1)
u, s, v = torch.svd(jacobian)
jsv.append(s.data.cpu().numpy())
logprint('[%3d/%3d] calculating Jacobian...' % (i, len(train_loader)))
jsv = np.concatenate(jsv)
logprint('JSV_mean %.4f JSV_std %.4f JSV_max %.4f JSV_min %.4f' %
(np.mean(jsv), np.std(jsv), np.max(jsv), np.min(jsv)))
if args.evaluate:
acc1, acc5, loss_test = validate(val_loader, model, criterion, args)
logprint('Acc1 %.4f Acc5 %.4f Loss_test %.4f' % (acc1, acc5, loss_test))
return
# finetune
finetune(model, train_loader, val_loader, train_sampler, criterion, pruner, best_acc1, best_acc1_epoch, args)
# @mst
def finetune(model, train_loader, val_loader, train_sampler, criterion, pruner, best_acc1, best_acc1_epoch, args, print_log=True):
# since model is new, we need a new optimizer
if args.arch.startswith('lenet'):
logprint('==> Start to finetune: using Adam optimizer')
optimizer = torch.optim.Adam(model.parameters(), args.lr)
else:
logprint('==> Start to finetune: using SGD optimizer')
optimizer = torch.optim.SGD(model.parameters(), args.lr,
momentum=args.momentum,
weight_decay=args.weight_decay)
# set lr finetune schduler for finetune
if args.method:
assert args.lr_ft is not None
lr_scheduler = PresetLRScheduler(args.lr_ft)
acc1_list, loss_train_list, loss_test_list = [], [], []
for epoch in range(args.start_epoch, args.epochs):
if args.distributed:
train_sampler.set_epoch(epoch)
# @mst: use our own lr scheduler
lr = lr_scheduler(optimizer, epoch) if args.method else adjust_learning_rate(optimizer, epoch, args)
if print_log:
logprint("==> Set lr = %s @ Epoch %d " % (lr, epoch))
# train for one epoch
train(train_loader, model, criterion, optimizer, epoch, args, print_log=print_log)
# @mst: check weights magnitude during finetune
if args.method in ['GReg-1', 'GReg-2'] and not isinstance(pruner, type(None)):
for name, m in model.named_modules():
if name in pruner.reg:
ix = pruner.layers[name].layer_index
mag_now = m.weight.data.abs().mean()
mag_old = pruner.original_w_mag[name]
ratio = mag_now / mag_old
tmp = '[%2d] %25s -- mag_old = %.4f, mag_now = %.4f (%.2f)' % (ix, name, mag_old, mag_now, ratio)
print(tmp, file=logger.logtxt, flush=True)
if args.screen_print:
print(tmp)
# evaluate on validation set
acc1, acc5, loss_test = validate(val_loader, model, criterion, args) # @mst: added acc5
if args.dataset != 'imagenet': # too costly, not test for now
acc1_train, acc5_train, loss_train = validate(train_loader, model, criterion, args)
else:
acc1_train, acc5_train, loss_train = -1, -1, -1
acc1_list.append(acc1)
loss_train_list.append(loss_train)
loss_test_list.append(loss_test)
# remember best acc@1 and save checkpoint
is_best = acc1 > best_acc1
best_acc1 = max(acc1, best_acc1)
if is_best:
best_acc1_epoch = epoch
best_loss_train = loss_train
best_loss_test = loss_test
if print_log:
accprint("Acc1 %.4f Acc5 %.4f Loss_test %.4f | Acc1_train %.4f Acc5_train %.4f Loss_train %.4f | Epoch %d (Best_Acc1 %.4f @ Best_Acc1_Epoch %d) lr %s" %
(acc1, acc5, loss_test, acc1_train, acc5_train, loss_train, epoch, best_acc1, best_acc1_epoch, lr))
logprint('predicted finish time: %s' % timer())
ngpus_per_node = torch.cuda.device_count()
if not args.multiprocessing_distributed or (args.multiprocessing_distributed
and args.rank % ngpus_per_node == 0):
if args.method:
# @mst: use our own save func
state = {'epoch': epoch + 1,
'arch': args.arch,
'model': model,
'state_dict': model.state_dict(),
'acc1': acc1,
'acc5': acc5,
'optimizer': optimizer.state_dict(),
'ExpID': logger.ExpID,
'prune_state': 'finetune',
}
if args.wg == 'weight':
state['mask'] = mask
save_model(state, is_best)
else:
save_checkpoint({
'epoch': epoch + 1,
'arch': args.arch,
'state_dict': model.state_dict(),
'best_acc1': best_acc1,
'optimizer' : optimizer.state_dict(),
}, is_best)
last5_acc_mean, last5_acc_std = np.mean(acc1_list[-args.last_n_epoch:]), np.std(acc1_list[-args.last_n_epoch:])
last5_loss_train_mean, last5_loss_train_std = np.mean(loss_train_list[-args.last_n_epoch:]), np.std(loss_train_list[-args.last_n_epoch:])
last5_loss_test_mean, last5_loss_test_std = np.mean(loss_test_list[-args.last_n_epoch:]), np.std(loss_test_list[-args.last_n_epoch:])
best = [best_acc1, best_loss_train, best_loss_test]
last5 = [last5_acc_mean, last5_acc_std, last5_loss_train_mean, last5_loss_train_std, last5_loss_test_mean, last5_loss_test_std]
return best, last5
def train(train_loader, model, criterion, optimizer, epoch, args, print_log=True):
batch_time = AverageMeter('Time', ':6.3f')
data_time = AverageMeter('Data', ':6.3f')
losses = AverageMeter('Loss', ':.4e')
top1 = AverageMeter('Acc@1', ':6.2f')
top5 = AverageMeter('Acc@5', ':6.2f')
progress = ProgressMeter(
len(train_loader),
[batch_time, data_time, losses, top1, top5],
prefix="Epoch: [{}]".format(epoch))
# switch to train mode
model.train()
end = time.time()
for i, (images, target) in enumerate(train_loader):
# measure data loading time
data_time.update(time.time() - end)
if args.gpu is not None:
images = images.cuda(args.gpu, non_blocking=True)
target = target.cuda(args.gpu, non_blocking=True)
# compute output
output = model(images)
loss = criterion(output, target)
# measure accuracy and record loss
acc1, acc5 = accuracy(output, target, topk=(1, 5))
losses.update(loss.item(), images.size(0))
top1.update(acc1[0], images.size(0))
top5.update(acc5[0], images.size(0))
# compute gradient and do SGD step
optimizer.zero_grad()
loss.backward()
optimizer.step()
# @mst: after update, zero out pruned weights
if args.method and args.wg == 'weight':
apply_mask_forward(model)
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
if print_log and i % args.print_freq == 0:
progress.display(i)
def validate(val_loader, model, criterion, args, noisy_model_ensemble=False):
batch_time = AverageMeter('Time', ':6.3f')
losses = AverageMeter('Loss', ':.4e')
top1 = AverageMeter('Acc@1', ':6.2f')
top5 = AverageMeter('Acc@5', ':6.2f')
progress = ProgressMeter(
len(val_loader),
[batch_time, losses, top1, top5],
prefix='Test: ')
train_state = model.training
# switch to evaluate mode
model.eval()
# @mst: add noise to model
model_ensemble = []
if noisy_model_ensemble:
for i in range(args.model_noise_num):
noisy_model = add_noise_to_model(model, std=args.model_noise_std)
model_ensemble.append(noisy_model)
logprint('==> added Gaussian noise to model weights (std=%s, num=%d)' % (args.model_noise_std, args.model_noise_num))
else:
model_ensemble.append(model)
time_compute = []
with torch.no_grad():
end = time.time()
for i, (images, target) in enumerate(val_loader):
if args.gpu is not None:
images = images.cuda(args.gpu, non_blocking=True)
target = target.cuda(args.gpu, non_blocking=True)
# compute output
t1 = time.time()
output = 0
for model in model_ensemble: # @mst: test model ensemble
output += model(images)
output /= len(model_ensemble)
time_compute.append((time.time() - t1) / images.size(0))
loss = criterion(output, target)
# measure accuracy and record loss
acc1, acc5 = accuracy(output, target, topk=(1, 5))
losses.update(loss.item(), images.size(0))
top1.update(acc1[0], images.size(0))
top5.update(acc5[0], images.size(0))
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
# if i % args.print_freq == 0:
# progress.display(i)
# @mst: commented because of too much log
# TODO: this should also be done with the ProgressMeter
# logprint(' * Acc@1 {top1.avg:.3f} Acc@5 {top5.avg:.3f}'
# .format(top1=top1, top5=top5))
# @mst: commented because we will use another print outside 'validate'
# logprint("time compute: %.4f ms" % (np.mean(time_compute)*1000))
# change back to original model state if necessary
if train_state:
model.train()
return top1.avg.item(), top5.avg.item(), losses.avg # @mst: added returning top5 acc and loss
def save_checkpoint(state, is_best, filename='checkpoint.pth.tar'):
torch.save(state, filename)
if is_best:
shutil.copyfile(filename, 'model_best.pth.tar')
# @mst: use our own save model function
def save_model(state, is_best=False, mark=''):
out = pjoin(logger.weights_path, "checkpoint.pth")
torch.save(state, out)
if is_best:
out_best = pjoin(logger.weights_path, "checkpoint_best.pth")
torch.save(state, out_best)
if mark:
out_mark = pjoin(logger.weights_path, "checkpoint_{}.pth".format(mark))
torch.save(state, out_mark)
class AverageMeter(object):
"""Computes and stores the average and current value"""
def __init__(self, name, fmt=':f'):
self.name = name
self.fmt = fmt
self.reset()
def reset(self):
self.val = 0
self.avg = 0
self.sum = 0
self.count = 0
def update(self, val, n=1):
self.val = val
self.sum += val * n
self.count += n
self.avg = self.sum / self.count
def __str__(self):
fmtstr = '{name} {val' + self.fmt + '} ({avg' + self.fmt + '})'
return fmtstr.format(**self.__dict__)
class ProgressMeter(object):
def __init__(self, num_batches, meters, prefix=""):
self.batch_fmtstr = self._get_batch_fmtstr(num_batches)
self.meters = meters
self.prefix = prefix
def display(self, batch):
entries = [self.prefix + self.batch_fmtstr.format(batch)]
entries += [str(meter) for meter in self.meters]
print('\t'.join(entries))
def _get_batch_fmtstr(self, num_batches):
num_digits = len(str(num_batches // 1))
fmt = '{:' + str(num_digits) + 'd}'
return '[' + fmt + '/' + fmt.format(num_batches) + ']'
def adjust_learning_rate(optimizer, epoch, args):
"""Sets the learning rate to the initial LR decayed by 10 every 30 epochs"""
lr = args.lr * (0.1 ** (epoch // 30))
for param_group in optimizer.param_groups:
param_group['lr'] = lr
return lr
def accuracy(output, target, topk=(1,)):
"""Computes the accuracy over the k top predictions for the specified values of k"""
with torch.no_grad():
maxk = max(topk)
batch_size = target.size(0)
_, pred = output.topk(maxk, 1, True, True)
pred = pred.t()
correct = pred.eq(target.view(1, -1).expand_as(pred))
res = []
for k in topk:
correct_k = correct[:k].view(-1).float().sum(0, keepdim=True)
res.append(correct_k.mul_(100.0 / batch_size))
return res
# @mst: zero out pruned weights for unstructured pruning
def apply_mask_forward(model):
global mask
for name, m in model.named_modules():
if name in mask:
m.weight.data.mul_(mask[name])
if __name__ == '__main__':
main()