-
Notifications
You must be signed in to change notification settings - Fork 23
/
Copy pathoption.py
164 lines (149 loc) · 9.48 KB
/
option.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
import torchvision.models as models
import argparse
import sys
model_names = sorted(name for name in models.__dict__
if name.islower() and not name.startswith("__")
and callable(models.__dict__[name]))
parser = argparse.ArgumentParser(description='Regularization-Pruning PyTorch')
parser.add_argument('--data', metavar='DIR', # @mst: 'data' -> '--data'
help='path to dataset')
parser.add_argument('--dataset',
help='dataset name', choices=['mnist', 'cifar10', 'cifar100', 'imagenet', 'imagenet_subset_200', 'tiny_imagenet'])
parser.add_argument('-a', '--arch', metavar='ARCH', default='resnet18',
# choices=model_names, # @mst: We will use more than the imagenet models, so remove this
help='model architecture: ' +
' | '.join(model_names) +
' (default: resnet18)')
parser.add_argument('-j', '--workers', default=4, type=int, metavar='N',
help='number of data loading workers (default: 4)')
parser.add_argument('--epochs', default=90, type=int, metavar='N',
help='number of total epochs to run')
parser.add_argument('--start-epoch', default=0, type=int, metavar='N',
help='manual epoch number (useful on restarts)')
parser.add_argument('-b', '--batch-size', '--batch_size', default=256, type=int,
metavar='N',
help='mini-batch size (default: 256), this is the total '
'batch size of all GPUs on the current node when '
'using Data Parallel or Distributed Data Parallel')
parser.add_argument('--lr', '--learning-rate', default=0.1, type=float,
metavar='LR', help='initial learning rate', dest='lr')
parser.add_argument('--momentum', default=0.9, type=float, metavar='M',
help='momentum')
parser.add_argument('--wd', '--weight-decay', default=1e-4, type=float,
metavar='W', help='weight decay (default: 1e-4)',
dest='weight_decay')
parser.add_argument('-p', '--print-freq', default=10, type=int,
metavar='N', help='print frequency (default: 10)')
parser.add_argument('--resume', default='', type=str, metavar='PATH',
help='path to latest checkpoint (default: none)')
parser.add_argument('-e', '--evaluate', dest='evaluate', action='store_true',
help='evaluate model on validation set')
parser.add_argument('--pretrained', dest='pretrained', action='store_true',
help='use pre-trained model')
parser.add_argument('--world-size', default=-1, type=int,
help='number of nodes for distributed training')
parser.add_argument('--rank', default=-1, type=int,
help='node rank for distributed training')
parser.add_argument('--dist-url', default='tcp://224.66.41.62:23456', type=str,
help='url used to set up distributed training')
parser.add_argument('--dist-backend', default='nccl', type=str,
help='distributed backend')
parser.add_argument('--seed', default=None, type=int,
help='seed for initializing training. ')
parser.add_argument('--gpu', default=None, type=int,
help='GPU id to use.')
parser.add_argument('--multiprocessing-distributed', action='store_true',
help='Use multi-processing distributed training to launch '
'N processes per node, which has N GPUs. This is the '
'fastest way to use PyTorch for either single node or '
'multi node data parallel training')
# @mst
import os
from utils import strlist_to_list, strdict_to_dict, check_path, parse_prune_ratio_vgg, merge_args
from model import num_layers, is_single_branch
pjoin = os.path.join
# routine params
parser.add_argument('--project_name', type=str, default="")
parser.add_argument('--debug', action="store_true")
parser.add_argument('--screen_print', action="store_true")
parser.add_argument('--note', type=str, default='', help='experiment note')
parser.add_argument('--print_interval', type=int, default=100)
parser.add_argument('--test_interval', type=int, default=2000)
parser.add_argument('--plot_interval', type=int, default=100000000)
parser.add_argument('--save_interval', type=int, default=2000, help="the interval to save model")
parser.add_argument('--params_json', type=str, default='', help='experiment params')
# base model related
parser.add_argument('--resume_path', type=str, default=None, help="supposed to replace the original 'resume' feature")
parser.add_argument('--directly_ft_weights', type=str, default=None, help="the path to a pretrained model")
parser.add_argument('--base_model_path', type=str, default=None, help="the path to the unpruned base model")
parser.add_argument('--start_epoch', type=int, default=0)
parser.add_argument('--save_init_model', action="store_true", help='save the model after initialization')
# general pruning method related
parser.add_argument('--method', type=str, default="", choices=['', 'L1', 'GReg-1', 'GReg-2', 'Oracle'],
help='pruning method name; default is "", implying the original training without any pruning')
parser.add_argument('--stage_pr', type=str, default="", help='to appoint layer-wise pruning ratio')
parser.add_argument('--skip_layers', type=str, default="", help='layer id to skip when pruning')
parser.add_argument('--lr_ft', type=str, default="{0:0.01,30:0.001,60:0.0001,75:0.00001}")
parser.add_argument('--data_path', type=str, default="./data")
parser.add_argument('--wg', type=str, default="filter", choices=['filter', 'channel', 'weight'])
parser.add_argument('--pick_pruned', type=str, default='min', choices=['min', 'max', 'rand'], help='the criterion to select weights to prune')
parser.add_argument('--reinit', type=str, default='', help='before finetuning, the pruned model will be reinited')
parser.add_argument('--not_use_bn', dest='use_bn', default=True, action="store_false", help='if use BN in the network')
parser.add_argument('--block_loss_grad', action="store_true", help="block the grad from loss, only apply weight decay")
parser.add_argument('--save_mag_reg_log', action="store_true", help="save log of L1-norm of filters wrt reg")
parser.add_argument('--save_order_log', action="store_true")
parser.add_argument('--mag_ratio_limit', type=float, default=1000)
parser.add_argument('--base_pr_model', type=str, default=None, help='the model that provides layer-wise pr')
parser.add_argument('--inherit_pruned', type=str, default='index', choices=['index', 'pr'],
help='when --base_pr_model is provided, we can choose to inherit the pruned index or only the pruning ratio (pr)')
parser.add_argument('--model_noise_std', type=float, default=0, help='add Gaussian noise to model weights')
parser.add_argument('--model_noise_num', type=int, default=10)
parser.add_argument('--oracle_pruning', action="store_true")
parser.add_argument('--ft_in_oracle_pruning', action="store_true")
parser.add_argument('--last_n_epoch', type=int, default=5, help='in correlation analysis, collect the last_n_epoch loss and average them')
parser.add_argument('--check_jsv_loop', type=int, default=0, help="num of batch loops when checking Jacobian singuar values")
# GReg method related (default setting is for ImageNet):
parser.add_argument('--batch_size_prune', type=int, default=64)
parser.add_argument('--lr_prune', type=float, default=0.001)
parser.add_argument('--update_reg_interval', type=int, default=5)
parser.add_argument('--stabilize_reg_interval', type=int, default=40000)
parser.add_argument('--reg_upper_limit', type=float, default=1.0)
parser.add_argument('--reg_upper_limit_pick', type=float, default=1e-2)
parser.add_argument('--reg_granularity_pick', type=float, default=1e-5)
parser.add_argument('--reg_granularity_prune', type=float, default=1e-4)
parser.add_argument('--reg_granularity_recover', type=float, default=-1e-4)
args = parser.parse_args()
args_tmp = {}
for k, v in args._get_kwargs():
args_tmp[k] = v
# merge other params (such as method params)
if args.params_json:
args = merge_args(args, args.params_json)
# Above is the default setting. But if we explicitly assign new value for some arg in the shell script,
# the following will adjust the arg to the assigned value.
script = " ".join(sys.argv)
for k, v in args_tmp.items():
if k in script:
args.__dict__[k] = v
# parse for layer-wise prune ratio
# stage_pr is a list of float, skip_layers is a list of strings
if args.stage_pr:
if is_single_branch(args.arch): # e.g., alexnet, vgg
args.stage_pr = parse_prune_ratio_vgg(args.stage_pr, num_layers=num_layers[args.arch]) # example: [0-4:0.5, 5:0.6, 8-10:0.2]
args.skip_layers = strlist_to_list(args.skip_layers, str) # example: [0, 2, 6]
else: # e.g., resnet
args.stage_pr = strlist_to_list(args.stage_pr, float) # example: [0, 0.4, 0.5, 0]
args.skip_layers = strlist_to_list(args.skip_layers, str) # example: [2.3.1, 3.1]
else:
assert args.base_pr_model, 'If stage_pr is not provided, base_pr_model must be provided'
# set up lr for finetuning
assert args.lr_ft, 'lr_ft must be provided'
args.lr_ft = strdict_to_dict(args.lr_ft, float)
args.resume_path = check_path(args.resume_path)
args.directly_ft_weights = check_path(args.directly_ft_weights)
args.base_model_path = check_path(args.base_model_path)
args.base_pr_model = check_path(args.base_pr_model)
# some deprecated params to maintain back-compatibility
args.copy_bn_w = True
args.copy_bn_b = True
args.reg_multiplier = 1