-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathsmarts_impropers.py
159 lines (134 loc) · 5.57 KB
/
smarts_impropers.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
#!/usr/bin/env python
"""
Utility functions for SMARTS-based querying of GeoOpt datasets on QCArchive
Created by:
- @pavankum
"""
from openff.toolkit.topology import Molecule, Topology
from openff.toolkit.typing.engines.smirnoff import ForceField
from rdkit.Chem import rdMolTransforms
from simtk.unit import bohrs
def get_gopt_matching_improper(smarts, datasets, client, hess=None):
"""Get all Optimization entries from the given QCArchive instance datasets that
match the given SMARTS pattern.
Parameters
----------
smarts : str
SMARTS to query optimization datasets against optimzation datasets
datasets : iterable of strings
OptimizationDataset names to sample from.
client : qcportal.FractalClient
Fractal client to use for database queries.
Returns
-------
opt_recs:
List of optimization records matching the given smarts
ind_set
Dict of a list of matching indices per record id
wbos
Dict of wbos corresponding to the improper 2nd and 4th atoms
Examples
--------
Get back TDEntries corresponding to a C-C bond torsiondrive:
>>> from qcportal import FractalClient
>>> client = FractalClient()
>>> smarts = "[*:1]~[#6:2]-[#6:3]-[*:4]"
>>> datasets = ["OpenFF Gen 2 Opt Set 1 Roche"]
>>> opts, ind_set, wbos = get_gopt_matching_dihedral(smarts, dataset, client)
"""
from collections import defaultdict
# first, we want to grab all datasets into memory
opt_recs = []
ind_set = defaultdict(list)
dihs_set = []
wbos = defaultdict(list)
failed_smiles = []
for dataset in datasets:
if hess:
ds = client.get_collection("Dataset", dataset)
else:
ds = client.get_collection("OptimizationDataset", dataset)
for entry in ds.data.records.values():
# need to build molecule from smiles so we can query against it
mol_smiles = entry.attributes[
"canonical_isomeric_explicit_hydrogen_mapped_smiles"
]
try:
offmol = Molecule.from_mapped_smiles(mol_smiles, allow_undefined_stereo=True)
except:
failed_smiles.append(mol_smiles)
print("Failed: ", mol_smiles)
continue
# apply SMARTS to each Optimization object
matching_indices = offmol.chemical_environment_matches(smarts)
# if we get back nothing, move on
if len(matching_indices) == 0:
continue
else:
optrec = ds.get_record(name=entry.name, specification="default")
if optrec.status == "ERROR":
continue
else:
offmol.add_conformer(optrec.get_final_molecule().geometry * bohrs)
try:
offmol.assign_fractional_bond_orders(bond_order_model="am1-wiberg-elf10")
except:
failed_smiles.append(mol_smiles)
print("Failed conformer generation for ELF10 charges: ", mol_smiles)
continue
ind_passed = []
for impropers in matching_indices:
if [impropers[1], impropers[3]] in ind_passed:
continue
elif [impropers[3], impropers[1]] in ind_passed:
continue
else:
bond = offmol.get_bond_between(impropers[1], impropers[3])
wbos[optrec.id].append(bond.fractional_bond_order)
ind_passed.append([impropers[1], impropers[3]])
ind_set[optrec.id].append(impropers)
opt_recs.append(entry)
#ind_set.append(matching_indices)
print(failed_smiles)
return opt_recs, ind_set, wbos
def show_oemol_struc(oemol, torsions=False, atom_indices=[], width=500, height=300):
from IPython.display import Image
from openeye import oechem, oedepict
# Highlight element of interest
class NoAtom(oechem.OEUnaryAtomPred):
def __call__(self, atom):
return False
class AtomInTorsion(oechem.OEUnaryAtomPred):
def __call__(self, atom):
return atom.GetIdx() in atom_indices
class NoBond(oechem.OEUnaryBondPred):
def __call__(self, bond):
return False
class BondInTorsion(oechem.OEUnaryBondPred):
def __call__(self, bond):
return (bond.GetBgn().GetIdx() in atom_indices) and (
bond.GetEnd().GetIdx() in atom_indices
)
class CentralBondInTorsion(oechem.OEUnaryBondPred):
def __call__(self, bond):
return (bond.GetBgn().GetIdx() in atom_indices[1:3]) and (
bond.GetEnd().GetIdx() in atom_indices[1:3]
)
opts = oedepict.OE2DMolDisplayOptions(width, height, oedepict.OEScale_AutoScale)
opts.SetAtomPropertyFunctor(oedepict.OEDisplayAtomIdx())
oedepict.OEPrepareDepiction(oemol)
img = oedepict.OEImage(width, height)
display = oedepict.OE2DMolDisplay(oemol, opts)
if torsions:
atoms = oemol.GetAtoms(AtomInTorsion())
bonds = oemol.GetBonds(NoBond())
abset = oechem.OEAtomBondSet(atoms, bonds)
oedepict.OEAddHighlighting(
display,
oechem.OEColor(oechem.OEYellow),
oedepict.OEHighlightStyle_BallAndStick,
abset,
)
oedepict.OERenderMolecule(img, display)
png = oedepict.OEWriteImageToString("png", img)
return Image(png)