forked from CodeForPhilly/chime
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathapp.py
443 lines (346 loc) · 17.8 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
from functools import reduce
from typing import Tuple, Dict, Any
import pandas as pd
import streamlit as st
import numpy as np
import altair as alt
hide_menu_style = """
<style>
#MainMenu {visibility: hidden;}
</style>
"""
st.markdown(hide_menu_style, unsafe_allow_html=True)
delaware = 564696
chester = 519293
montgomery = 826075
bucks = 628341
philly = 1581000
S_default = delaware + chester + montgomery + bucks + philly
known_infections = 63 # update daily
known_cases = 4 # update daily
# Widgets
current_hosp = st.sidebar.number_input(
"Currently Hospitalized COVID-19 Patients", value=known_cases, step=1, format="%i"
)
initial_infections = st.sidebar.number_input(
"Currently Known Regional Infections", value=known_infections, step=10, format="%i"
)
doubling_time = st.sidebar.number_input(
"Doubling time before social distancing (days)", value=6, step=1, format="%i"
)
relative_contact_rate = st.sidebar.number_input(
"Social distancing (% reduction in social contact)", 0, 100, value=0, step=5, format="%i"
)/100.0
hosp_rate = (
st.sidebar.number_input("Hospitalization %(total infections)", 0, 100, value=5, step=1, format="%i")
/ 100.0
)
icu_rate = (
st.sidebar.number_input("ICU %(total infections)", 0, 100, value=2, step=1, format="%i") / 100.0
)
vent_rate = (
st.sidebar.number_input("Ventilated %(total infections)", 0, 100, value=1, step=1, format="%i")
/ 100.0
)
hosp_los = st.sidebar.number_input("Hospital Length of Stay", value=7, step=1, format="%i")
icu_los = st.sidebar.number_input("ICU Length of Stay", value=9, step=1, format="%i")
vent_los = st.sidebar.number_input("Vent Length of Stay", value=10, step=1, format="%i")
Penn_market_share = (
st.sidebar.number_input(
"Hospital Market Share (%)", 0.0, 100.0, value=15.0, step=1.0, format="%f"
)
/ 100.0
)
S = st.sidebar.number_input(
"Regional Population", value=S_default, step=100000, format="%i"
)
total_infections = current_hosp / Penn_market_share / hosp_rate
detection_prob = initial_infections / total_infections
S, I, R = S, initial_infections / detection_prob, 0
intrinsic_growth_rate = 2 ** (1 / doubling_time) - 1
recovery_days = 14.0
# mean recovery rate, gamma, (in 1/days).
gamma = 1 / recovery_days
# Contact rate, beta
beta = (
intrinsic_growth_rate + gamma
) / S * (1-relative_contact_rate) # {rate based on doubling time} / {initial S}
r_t = beta / gamma * S # r_t is r_0 after distancing
r_naught = r_t / (1-relative_contact_rate)
doubling_time_t = 1/np.log2(beta*S - gamma +1) # doubling time after distancing
def head():
st.title("COVID-19 Hospital Impact Model for Epidemics")
st.markdown(
"""*This tool was developed by the [Predictive Healthcare team](http://predictivehealthcare.pennmedicine.org/) at
Penn Medicine. For questions and comments please see our
[contact page](http://predictivehealthcare.pennmedicine.org/contact/). Code can be found on [Github](https://github.com/pennsignals/chime).
Join our [Slack channel](https://codeforphilly.org/chat?channel=covid19-chime-penn) if you would like to get involved!*""")
st.markdown(
"""The estimated number of currently infected individuals is **{total_infections:.0f}**. The **{initial_infections}**
confirmed cases in the region imply a **{detection_prob:.0%}** rate of detection. This is based on current inputs for
Hospitalizations (**{current_hosp}**), Hospitalization rate (**{hosp_rate:.0%}**), Region size (**{S}**),
and Hospital market share (**{Penn_market_share:.0%}**).
An initial doubling time of **{doubling_time}** days and a recovery time of **{recovery_days}** days imply an $R_0$ of
**{r_naught:.2f}**.
**Mitigation**: A **{relative_contact_rate:.0%}** reduction in social contact after the onset of the
outbreak reduces the doubling time to **{doubling_time_t:.1f}** days, implying an effective $R_t$ of **${r_t:.2f}$**.
""".format(
total_infections=total_infections,
initial_infections=initial_infections,
detection_prob=detection_prob,
current_hosp=current_hosp,
hosp_rate=hosp_rate,
S=S,
Penn_market_share=Penn_market_share,
recovery_days=recovery_days,
r_naught=r_naught,
doubling_time=doubling_time,
relative_contact_rate=relative_contact_rate,
r_t=r_t,
doubling_time_t=doubling_time_t
)
)
return None
head()
def show_more_info_about_this_tool():
"""a lot of streamlit writing to screen."""
st.subheader(
"[Discrete-time SIR modeling](https://mathworld.wolfram.com/SIRModel.html) of infections/recovery"
)
st.markdown(
"""The model consists of individuals who are either _Susceptible_ ($S$), _Infected_ ($I$), or _Recovered_ ($R$).
The epidemic proceeds via a growth and decline process. This is the core model of infectious disease spread and has been in use in epidemiology for many years."""
)
st.markdown("""The dynamics are given by the following 3 equations.""")
st.latex("S_{t+1} = (-\\beta S_t I_t) + S_t")
st.latex("I_{t+1} = (\\beta S_t I_t - \\gamma I_t) + I_t")
st.latex("R_{t+1} = (\\gamma I_t) + R_t")
st.markdown(
"""To project the expected impact to Penn Medicine, we estimate the terms of the model.
To do this, we use a combination of estimates from other locations, informed estimates based on logical reasoning, and best guesses from the American Hospital Association.
### Parameters
The model's parameters, $\\beta$ and $\\gamma$, determine the virulence of the epidemic.
$$\\beta$$ can be interpreted as the _effective contact rate_:
""")
st.latex("\\beta = \\tau \\times c")
st.markdown(
"""which is the transmissibility ($\\tau$) multiplied by the average number of people exposed ($$c$$). The transmissibility is the basic virulence of the pathogen. The number of people exposed $c$ is the parameter that can be changed through social distancing.
$\\gamma$ is the inverse of the mean recovery time, in days. I.e.: if $\\gamma = 1/{recovery_days}$, then the average infection will clear in {recovery_days} days.
An important descriptive parameter is the _basic reproduction number_, or $R_0$. This represents the average number of people who will be infected by any given infected person. When $R_0$ is greater than 1, it means that a disease will grow. Higher $R_0$'s imply more rapid growth. It is defined as """.format(recovery_days=int(recovery_days) , c='c'))
st.latex("R_0 = \\beta /\\gamma")
st.markdown("""
$R_0$ gets bigger when
- there are more contacts between people
- when the pathogen is more virulent
- when people have the pathogen for longer periods of time
A doubling time of {doubling_time} days and a recovery time of {recovery_days} days imply an $R_0$ of {r_naught:.2f}.
#### Effect of social distancing
After the beginning of the outbreak, actions to reduce social contact will lower the parameter $c$. If this happens at
time $t$, then the number of people infected by any given infected person is $R_t$, which will be lower than $R_0$.
A {relative_contact_rate:.0%} reduction in social contact would increase the time it takes for the outbreak to double,
to {doubling_time_t:.2f} days from {doubling_time:.2f} days, with a $R_t$ of {r_t:.2f}.
#### Using the model
We need to express the two parameters $\\beta$ and $\\gamma$ in terms of quantities we can estimate.
- $\\gamma$: the CDC is recommending 14 days of self-quarantine, we'll use $\\gamma = 1/{recovery_days}$.
- To estimate $$\\beta$$ directly, we'd need to know transmissibility and social contact rates. since we don't know these things, we can extract it from known _doubling times_. The AHA says to expect a doubling time $T_d$ of 7-10 days. That means an early-phase rate of growth can be computed by using the doubling time formula:
""".format(doubling_time=doubling_time,
recovery_days=recovery_days,
r_naught=r_naught,
relative_contact_rate=relative_contact_rate,
doubling_time_t=doubling_time_t,
r_t=r_t)
)
st.latex("g = 2^{1/T_d} - 1")
st.markdown(
"""
- Since the rate of new infections in the SIR model is $g = \\beta S - \\gamma$, and we've already computed $\\gamma$, $\\beta$ becomes a function of the initial population size of susceptible individuals.
$$\\beta = (g + \\gamma)$$.
### Initial Conditions
- The total size of the susceptible population will be the entire catchment area for Penn Medicine entities (HUP, PAH, PMC, CCH)
- Delaware = {delaware}
- Chester = {chester}
- Montgomery = {montgomery}
- Bucks = {bucks}
- Philly = {philly}""".format(
delaware=delaware,
chester=chester,
montgomery=montgomery,
bucks=bucks,
philly=philly,
)
)
return None
if st.checkbox("Show more info about this tool"):
show_more_info_about_this_tool()
# The SIR model, one time step
def sir(y, beta, gamma, N):
S, I, R = y
Sn = (-beta * S * I) + S
In = (beta * S * I - gamma * I) + I
Rn = gamma * I + R
if Sn < 0:
Sn = 0
if In < 0:
In = 0
if Rn < 0:
Rn = 0
scale = N / (Sn + In + Rn)
return Sn * scale, In * scale, Rn * scale
# Run the SIR model forward in time
def sim_sir(S, I, R, beta, gamma, n_days, beta_decay=None):
N = S + I + R
s, i, r = [S], [I], [R]
for day in range(n_days):
y = S, I, R
S, I, R = sir(y, beta, gamma, N)
if beta_decay:
beta = beta * (1 - beta_decay)
s.append(S)
i.append(I)
r.append(R)
s, i, r = np.array(s), np.array(i), np.array(r)
return s, i, r
n_days = st.slider("Number of days to project", 30, 200, 60, 1, "%i")
beta_decay = 0.0
s, i, r = sim_sir(S, I, R, beta, gamma, n_days, beta_decay=beta_decay)
hosp = i * hosp_rate * Penn_market_share
icu = i * icu_rate * Penn_market_share
vent = i * vent_rate * Penn_market_share
days = np.array(range(0, n_days + 1))
data_list = [days, hosp, icu, vent]
data_dict = dict(zip(["day", "hosp", "icu", "vent"], data_list))
projection = pd.DataFrame.from_dict(data_dict)
st.subheader("New Admissions")
st.markdown("Projected number of **daily** COVID-19 admissions at Penn hospitals")
# New cases
projection_admits = projection.iloc[:-1, :] - projection.shift(1)
projection_admits[projection_admits < 0] = 0
plot_projection_days = n_days - 10
projection_admits["day"] = range(projection_admits.shape[0])
def new_admissions_chart(projection_admits: pd.DataFrame, plot_projection_days: int) -> alt.Chart:
"""docstring"""
projection_admits = projection_admits.rename(columns={"hosp": "Hospitalized", "icu": "ICU", "vent": "Ventilated"})
return (
alt
.Chart(projection_admits.head(plot_projection_days))
.transform_fold(fold=["Hospitalized", "ICU", "Ventilated"])
.mark_line(point=True)
.encode(
x=alt.X("day", title="Days from today"),
y=alt.Y("value:Q", title="Daily admissions"),
color="key:N",
tooltip=["day", "key:N"]
)
.interactive()
)
st.altair_chart(new_admissions_chart(projection_admits, plot_projection_days), use_container_width=True)
if st.checkbox("Show Projected Admissions in tabular form"):
admits_table = projection_admits[np.mod(projection_admits.index, 7) == 0].copy()
admits_table["day"] = admits_table.index
admits_table.index = range(admits_table.shape[0])
admits_table = admits_table.fillna(0).astype(int)
st.dataframe(admits_table)
st.subheader("Admitted Patients (Census)")
st.markdown(
"Projected **census** of COVID-19 patients, accounting for arrivals and discharges at Penn hospitals"
)
def _census_table(projection_admits, hosp_los, icu_los, vent_los) -> pd.DataFrame:
"""ALOS for each category of COVID-19 case (total guesses)"""
los_dict = {
"hosp": hosp_los,
"icu": icu_los,
"vent": vent_los,
}
census_dict = dict()
for k, los in los_dict.items():
census = (
projection_admits.cumsum().iloc[:-los, :]
- projection_admits.cumsum().shift(los).fillna(0)
).apply(np.ceil)
census_dict[k] = census[k]
census_df = pd.DataFrame(census_dict)
census_df["day"] = census_df.index
census_df = census_df[["day", "hosp", "icu", "vent"]]
census_table = census_df[np.mod(census_df.index, 7) == 0].copy()
census_table.index = range(census_table.shape[0])
census_table.loc[0, :] = 0
census_table = census_table.dropna().astype(int)
return census_table
census_table = _census_table(projection_admits, hosp_los, icu_los, vent_los)
def admitted_patients_chart(census: pd.DataFrame) -> alt.Chart:
"""docstring"""
census = census.rename(columns={"hosp": "Hospital Census", "icu": "ICU Census", "vent": "Ventilated Census"})
return (
alt
.Chart(census)
.transform_fold(fold=["Hospital Census", "ICU Census", "Ventilated Census"])
.mark_line(point=True)
.encode(
x=alt.X("day", title="Days from today"),
y=alt.Y("value:Q", title="Census"),
color="key:N",
tooltip=["day", "key:N"]
)
.interactive()
)
st.altair_chart(admitted_patients_chart(census_table), use_container_width=True)
if st.checkbox("Show Projected Census in tabular form"):
st.dataframe(census_table)
def additional_projections_chart(i: np.ndarray, r: np.ndarray) -> alt.Chart:
dat = pd.DataFrame({"Infected": i, "Recovered": r})
return (
alt
.Chart(dat.reset_index())
.transform_fold(fold=["Infected", "Recovered"])
.mark_line()
.encode(
x=alt.X("index", title="Days from today"),
y=alt.Y("value:Q", title="Case Volume"),
tooltip=["key:N", "value:Q"],
color="key:N"
)
.interactive()
)
st.markdown(
"""**Click the checkbox below to view additional data generated by this simulation**"""
)
def show_additional_projections():
st.subheader(
"The number of infected and recovered individuals in the hospital catchment region at any given moment"
)
st.altair_chart(additional_projections_chart(i, r), use_container_width=True)
if st.checkbox("Show Raw SIR Similation Data"):
# Show data
days = np.array(range(0, n_days + 1))
data_list = [days, s, i, r]
data_dict = dict(zip(["day", "susceptible", "infections", "recovered"], data_list))
projection_area = pd.DataFrame.from_dict(data_dict)
infect_table = (projection_area.iloc[::7, :]).apply(np.floor)
infect_table.index = range(infect_table.shape[0])
st.dataframe(infect_table)
if st.checkbox("Show Additional Projections"):
show_additional_projections()
# Definitions and footer
st.subheader("Guidance on Selecting Inputs")
st.markdown(
"""* **Hospitalized COVID-19 Patients:** The number of patients currently hospitalized with COVID-19. This number is used in conjunction with Hospital Market Share and Hospitalization % to estimate the total number of infected individuals in your region.
* **Currently Known Regional Infections**: The number of infections reported in your hospital's catchment region. This input is used to estimate the detection rate of infected individuals.
* **Doubling Time (days):** This parameter drives the rate of new cases during the early phases of the outbreak. The American Hospital Association currently projects doubling rates between 7 and 10 days. This is the doubling time you expect under status quo conditions. To account for reduced contact and other public health interventions, modify the _Social distancing_ input.
* **Social distancing (% reduction in person-to-person physical contact):** This parameter allows users to explore how reduction in interpersonal contact & transmission (hand-washing) might slow the rate of new infections. It is your estimate of how much social contact reduction is being achieved in your region relative to the status quo. While it is unclear how much any given policy might affect social contact (eg. school closures or remote work), this parameter lets you see how projections change with percentage reductions in social contact.
* **Hospitalization %(total infections):** Percentage of **all** infected cases which will need hospitalization.
* **ICU %(total infections):** Percentage of **all** infected cases which will need to be treated in an ICU.
* **Ventilated %(total infections):** Percentage of **all** infected cases which will need mechanical ventilation.
* **Hospital Length of Stay:** Average number of days of treatment needed for hospitalized COVID-19 patients.
* **ICU Length of Stay:** Average number of days of ICU treatment needed for ICU COVID-19 patients.
* **Vent Length of Stay:** Average number of days of ventilation needed for ventilated COVID-19 patients.
* **Hospital Market Share (%):** The proportion of patients in the region that are likely to come to your hospital (as opposed to other hospitals in the region) when they get sick. One way to estimate this is to look at all of the hospitals in your region and add up all of the beds. The number of beds at your hospital divided by the total number of beds in the region times 100 will give you a reasonable starting estimate.
* **Regional Population:** Total population size of the catchment region of your hospital(s).
"""
)
st.subheader("References & Acknowledgements")
st.markdown(
"""* AHA Webinar, Feb 26, James Lawler, MD, an associate professor University of Nebraska Medical Center, What Healthcare Leaders Need To Know: Preparing for the COVID-19
* We would like to recognize the valuable assistance in consultation and review of model assumptions by Michael Z. Levy, PhD, Associate Professor of Epidemiology, Department of Biostatistics, Epidemiology and Informatics at the Perelman School of Medicine
"""
)
st.markdown("© 2020, The Trustees of the University of Pennsylvania")