forked from erhanbas/navigator
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcropper.py
188 lines (159 loc) · 7.96 KB
/
cropper.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
import improc
import os
import util
import re
import numpy as np
import h5py
import skimage.io as io
def crop_from_render(data_fold,input_swc,output_folder,output_swc_name,output_h5_name,scale,cast2vox=True):
output_swc_file = os.path.join(output_folder,output_swc_name)
output_h5_file = os.path.join(output_folder,output_h5_name)
params = util.readParameterFile(parameterfile=data_fold+"/calculated_parameters.jl")
# check if input argument is file or folder
if os.path.isfile(input_swc):
inputfolder, swc_name_w_ext = os.path.split(input_swc)
nm, edges, R, offset, scale, header = util.readSWC(swcfile=os.path.join(inputfolder, swc_name_w_ext),
scale=scale)
elif os.path.isdir(input_swc):
inputfolder = input_swc
nm, edges, R = util.appendSWCfolder(inputfolder,scale=scale) # somewhat redundant but cleaner
nm_, edges_, R_, filenames, header = util.readSWCfolder(inputfolder,scale=scale)
if cast2vox:
# to fix the bug in Janelia Workstation
nm = nm + params['vixsize']/scale/2
xyz_ori = util.um2pix(nm,params['A']).T
# LVV BUG FIX: if source is JW, fix coordinates xyz_correct = xyz_LVV-[1 1 0]
# if any([re.findall('Janelia Workstation Large Volume Viewer', lines) for lines in header]):
# xyz=xyz-[1,1,0]
# upsample xyz if needed
diff_xyz = np.diff(xyz_ori,axis=0)
norm_xyz = np.sqrt(np.sum(diff_xyz**2,axis=1))
if np.mean(norm_xyz)>5:
xyz = util.upsampleSWC(xyz_ori, edges, sp=10)
else:
xyz = nm
if False:
octpath, xres = improc.xyz2oct(xyz,params)
else:
depthextend = 3
params_p1=params.copy()
params_p1["nlevels"]=params_p1["nlevels"]+depthextend
params_p1["leafshape"]=params_p1["leafshape"]/(2**depthextend)
octpath, xres = improc.xyz2oct(xyz,params_p1)
octpath_cover = np.unique(octpath, axis=0)
gridlist_cover = improc.oct2grid(octpath_cover)
octpath_dilated,gridlist_dilated = improc.dilateOct(octpath_cover)
#### second pass (somewhat heuristic, helps with cropping later on)
octpath_dilated,gridlist_dilated = improc.dilateOct(octpath_dilated)
# octpath_dilated,gridlist_dilated = improc.dilateOct(octpath_dilated)
# octpath_dilated,gridlist_dilated = improc.dilateOct(octpath_dilated)
depthBase = params["nlevels"].astype(int)
depthFull = params_p1["nlevels"].astype(int)
tileSize = params["leafshape"].astype(int)
leafSize = params_p1["leafshape"].astype(int)
tilelist = improc.chunklist(octpath_dilated,depthBase) #1..8
tileids = list(tilelist.keys())
# base on bounding box (results in cropped output volume)
# gridReference = np.min(gridlist_dilated, axis=0)
# gridSize = np.max(gridlist_dilated, axis=0) - gridReference +1
# base on initial image
gridReference = np.array((0,0,0))
gridSize = tileSize*(2**(depthBase))/leafSize
volReference = gridReference*leafSize
outVolumeSize = np.append(gridSize*leafSize,2) #append color channel
chunksize = np.append(leafSize,2)
setting = dict()
setting['volSize'] = outVolumeSize
setting['chunkSize'] = tuple(chunksize)
setting['depthBase'] = depthBase
setting['depthFull'] = depthFull
setting['tileSize'] = tileSize
setting['leafSize'] = leafSize
setting['volReference'] = volReference
setting['compression'] = "gzip"
setting['compression_opts'] = 9
setting['dtype'] = 'uint16'
setting['type'] = 'h5'
# save into cropped swc
xyz_shifted = xyz_ori-volReference
if xyz_shifted.ndim<2:
xyz_shifted = xyz_shifted[None,:] # extend dimension to prevent r < h cases
# TODO: fix edge upsampling before dumping swc file
# with open(output_swc_file,'w') as fswc:
# for iter,txt in enumerate(xyz_shidefaultDataPlaceholderfted):
# fswc.write('{:.0f} {:.0f} {:.4f} {:.4f} {:.4f} {:.2f} {:.0f}\n'.format(edges[iter,0].__int__(),1,txt[0]-1,txt[1],txt[2],1,edges[iter,1].__int__()))
# dump into file
with h5py.File(output_h5_file, "w") as f:
dset_swc = f.create_dataset("reconstruction", (xyz_shifted.shape[0], 7), dtype='f')
for iter, xyz_ in enumerate(xyz_shifted):
dset_swc[iter, :] = np.array(
[edges[iter, 0].__int__(), 1, xyz_[0], xyz_[1], xyz_[2], 1.0, edges[iter, 1].__int__()])
if os.path.isdir(input_swc):
# dump into file
with h5py.File(output_h5_file, "a") as f:
swc_group = f.create_group("swc_files")
f_swc_original = swc_group.create_group("original")
for it, swcname in enumerate(filenames):
numrows = R_[it].shape[0]
dset_swc = f_swc_original.create_dataset(swcname,(numrows, 7), dtype='f')
edges_swc = edges_[it]
nm_swc = nm_[it]
for iter, xyz_ in enumerate(nm_swc):
dset_swc[iter, :] = np.array(
[edges_swc[iter, 0].__int__(), 1, xyz_[0], xyz_[1], xyz_[2], 1.0, edges_swc[iter, 1].__int__()])
f_swc_shifted = swc_group.create_group("shifted")
for it, swcname in enumerate(filenames):
numrows = R_[it].shape[0]
dset_swc = f_swc_shifted.create_dataset(swcname,(numrows, 7), dtype='f')
edges_swc = edges_[it]
nm_swc = nm_[it]
nm_swc = nm_swc + params['vixsize'] / scale / 2
xyz_ori = util.um2pix(nm_swc, params['A']).T
nm_swc = xyz_ori - volReference
for iter, xyz_ in enumerate(nm_swc):
dset_swc[iter, :] = np.array(
[edges_swc[iter, 0].__int__(), 1, xyz_[0], xyz_[1], xyz_[2], 1.0, edges_swc[iter, 1].__int__()])
dump = util.dumper(data_fold, output_h5_file, setting,tilelist=tilelist)
dump.write()
# write into h5
# with h5py.File(output_h5_file, "w") as f:
# dset_swc = f.create_dataset("reconstruction", (xyz_shifted.shape[0],7), dtype='f')
# for iter, xyz_ in enumerate(xyz_shifted):
# dset_swc[iter,:] = np.array([edges[iter, 0].__int__(), 1, xyz_[0], xyz_[1], xyz_[2], 1.0, edges[iter, 1].__int__()])
#
# dset = f.create_dataset("volume", outVolumeSize, dtype='uint16', chunks=tuple(chunksize), compression="gzip", compression_opts=9)
# # crop chuncks from a tile read in tilelist
# for iter,idTile in enumerate(tileids):
# print('{} : {} out of {}'.format(idTile, iter, len(tileids)))
# tilename = '/'.join(a for a in idTile)
# tilepath = data_fold+'/'+tilename
#
# ijkTile = np.array(list(idTile), dtype=int)
# xyzTile = improc.oct2grid(ijkTile.reshape(1, len(ijkTile)))
# locTile = xyzTile * tileSize
# locShift = np.asarray(locTile - volReference,dtype=int).flatten()
# if os.path.isdir(tilepath):
#
# im = improc.loadTiles(tilepath)
# relativeDepth = depthFull - depthBase
#
# # patches in idTiled
# for patch in tilelist[idTile]:
# ijk = np.array(list(patch),dtype=int)
# xyz = improc.oct2grid(ijk.reshape(1, len(ijk))) # in 0 base
#
# start = np.ndarray.flatten(xyz*leafSize)
# end = np.ndarray.flatten(start + leafSize)
# # print(start,end)
# imBatch = im[start[0]:end[0],start[1]:end[1],start[2]:end[2],:]
#
# start = start + locShift
# end = end + locShift
# dset[start[0]:end[0],start[1]:end[1],start[2]:end[2],:] = imBatch
#
# # imgplot = plt.imshow(np.max(im[..., 0], axis=2))
#
# # # convert to tif
# # with h5py.File(output_h5_file, "r") as f:
# # dset = f['volume']
# # io.imsave(cropped_tif_file, np.swapaxes(dset[:,:,:,0],2,0))