forked from erhanbas/navigator
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathimproc.py
181 lines (157 loc) · 5.46 KB
/
improc.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
import numpy as np
import math
import re
from collections import defaultdict
import os
from skimage import io
def boundingbox(xyz):
# finds the bounding box of point cloud
return(np.round(np.array([np.min(xyz,axis=1),np.max(xyz,axis=1)])))
def snapLoc(I,nploc,w=1):
# finds the location of maxima in a 3x3x3 neighborhood
nplocupdated = nploc.copy()
for iter,loc in enumerate(nploc):
Icrop = I[loc[0]-w:loc[0]+w+1,
loc[1]-w:loc[1]+w+1,
loc[2]-w:loc[2]+w+1]
i, j, k = np.unravel_index(Icrop.argmax(), Icrop.shape)
nplocupdated[iter] = loc+(np.array((i,j,k))-w)
return nplocupdated
def xyz2oct(xyz,params):
# converts xyz location to oct location
if len(xyz.shape) ==1:
xyz=xyz[None,:]
nlevel = np.int(params['nlevels'])
leafsize = params['leafshape']
octpath = np.zeros((xyz.shape[0],nlevel))
xres = np.zeros((xyz.shape[0],3))
for idx in range(xyz.shape[0]):
bits = []
x = xyz[idx]
u = leafsize
for n in range(nlevel-1,-1,-1):
bn = 2**n*u
th = x>bn
bits.append(th)
x = x - bn*th
# convert to octodigit
octpath[idx,:] = (1+ np.sum(np.array(bits)*2**np.array([0,1,2]),axis=1))[None,:]
xres[idx,:] = x
return octpath.astype(int),xres
def to_base_3(n):
s = ""
while n:
print(n)
s = str(n % 3) + s
n = round(n/3)
return s
def to_base_2(n,numdigit=0):
n = math.floor(n)
s = ""
while n:
s = str(n % 2) + s
n = math.floor(n/2)
s=(numdigit-len(s))*'0'+s
return s
def oct2grid_list(octpath):
depth = octpath.shape[1]
numpath = octpath.shape[0]
alltiles = []
for ijk in octpath:
xyz = oct2grid(ijk.reshape(1,depth))
# for every path, there are 26 neighbors
alltiles.append(xyz[None,:])
if len(alltiles) == 1:
alltiles = np.squeeze(alltiles[0])
else:
alltiles = np.squeeze(np.concatenate(alltiles, axis=1))
return alltiles
def oct2grid(oct_idx):
# (inverse logic as grid2oct)
# oct_idx [1..8]
# grid [0 dims]
if np.any(oct_idx < 1) or np.any(oct_idx > 8):
raise Exception('oct out of bound, oct \in [1...8]')
if oct_idx.ndim == 1:
oct_idx = oct_idx.reshape(1,len(oct_idx))
numlist = oct_idx.shape[0]
depth = oct_idx.shape[1]
binarray = 2 ** (np.array(range(depth, 0, -1)) - 1)
gridarray = np.zeros((numlist,3))
for il in range(numlist):
idxarray = np.zeros((3, depth))
for id in range(depth):
base2 = to_base_2(oct_idx[il,id]-1, 3)
idxarray[2, id] = int(base2[0])
idxarray[1, id] = int(base2[1])
idxarray[0, id] = int(base2[2])
gridarray[il,:] = np.sum(idxarray * binarray, axis=1)
# broadcast binarray
return(np.asarray(gridarray,dtype=int))
def loadTiles(tilepath,ext=".tif"):
IM=[]
files = os.listdir(tilepath)
files.sort() # make sure that channels are loaded in order
for file in files:
if file.endswith(ext):
tilefiles = os.path.join(tilepath, file)
# load tile if exists
if os.path.isfile(tilefiles):
im = io.imread(tilefiles) # zyx order
IM.append(np.swapaxes(im, 0, 2))
return np.stack(IM,axis=3)
def grid2oct(xyz,depth):
# order flip to pre (inverse logic as oct2grid)
numlist = xyz.shape[0]
outijk = np.zeros((numlist, depth), dtype=np.int)
for il in range(numlist):
arr = []
arr.append(to_base_2(xyz[il,2], depth))
arr.append(to_base_2(xyz[il,1], depth))
arr.append(to_base_2(xyz[il,0], depth))
for idx in range(depth):
b = [el[idx] for el in arr]
outijk[il,idx]=np.int(''.join(b),2)
return(outijk+1)
def chunklist(pathlist,depth):
# -> for each tile, find bbox of crop sub-octtree
listdict = defaultdict(list)
for tileid in pathlist:
# list of crops for this tile
mykey = re.sub('[\[\]]', '', np.array_str(tileid).replace(' ',''))
listdict[mykey[:depth]].append(mykey[depth:])
return listdict
def dilateOct(octpath,width=1):
# dilates the octpath with the given search widty
# 1/2/3 with width 1 -> 1/2/3 | 2/2/3 | 1/1/3 | 1/3/3 | ... | 2/3/4
depth = octpath.shape[1]
numpath = octpath.shape[0]
ix, iy, iz = np.mgrid[-width:width+1, -width:width+1, -width:width+1]
ixyz = np.stack((ix.flatten(), iy.flatten(), iz.flatten()), axis=1)
alltiles = []
for ijk in octpath:
xyz = oct2grid(ijk.reshape(1,depth))
# for every path, there are 26 neighbors
alltiles.append(xyz[None,:]+ixyz)
if len(alltiles) == 1:
alltiles = np.squeeze(alltiles[0])
else:
alltiles = np.squeeze(np.concatenate(alltiles, axis=1))
# delete any out of bound tiles
deletethese = np.any(np.logical_or(alltiles < 0, alltiles > 2**depth-1), axis=1)
alltiles = np.delete(alltiles,(np.where(deletethese)),axis=0)
# unique entries
alltiles = np.unique(alltiles,axis=0)
# convert to octpaths
octlist = [grid2oct(tileid[None,:], depth) for tileid in alltiles]
octlist = np.concatenate(octlist, axis=0)
return octlist,alltiles
# def boundingboxOctree(xyz,params):
# # finds the bounding box of point cloud wrto octree
#
# x = xyz[]
# for idx in range(nlevel,0,-1):
# th = xyz
#
#
# return(np.round(np.array([np.min(xyz,axis=1),np.max(xyz,axis=1)])))