-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy path2WayGAN_Train_v3.py
329 lines (237 loc) · 14.3 KB
/
2WayGAN_Train_v3.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
import torch
import torch.optim as optim
from torchvision.utils import save_image
from datetime import datetime
import itertools
from libs.compute import *
from libs.constant import *
from libs.model import *
from libs.networks import *
import gc
import tensorboardX
clip_value = 1e8
D_G_ratio = 50
if __name__ == "__main__":
start_time = datetime.now()
if continue_checkpoint:
checkpoint = torch.load(continue_checkpoint)
#temporary
#writer1 = checkpoint["summary_writer"]
writer1 = tensorboardX.SummaryWriter('./runs/exp-1')
else:
checkpoint = False
writer1 = tensorboardX.SummaryWriter('./runs/exp-1')
generatorX,generatorX_ = create_generatorsX(checkpoint)
generatorY,generatorY_ = create_generatorsY(checkpoint)
discriminatorX,discriminatorY = create_dixcriminators(checkpoint)
if torch.cuda.is_available():
generatorX.cuda(device=device)
generatorX_.cuda(device=device)
generatorY.cuda(device=device)
generatorY_.cuda(device=device)
discriminatorY.cuda(device=device)
discriminatorX.cuda(device=device)
# Loading Training and Test Set Data
trainLoader_cross, testLoader = data_loader_mask()
# MSE Loss and Optimizer
criterion = nn.MSELoss()
#set optimizer and scheduler
optimizer_g = optim.Adam(itertools.chain(generatorX.parameters(), generatorY.parameters(),generatorX_.parameters(),generatorY_.parameters()), lr=LEARNING_RATE, betas=(BETA1, BETA2))
optimizer_d = optim.Adam(itertools.chain(discriminatorY.parameters(),discriminatorX.parameters()), lr=LEARNING_RATE, betas=(BETA1, BETA2))
if continue_checkpoint:
optimizer_g.load_state_dict( checkpoint['optimizer_g'])
optimizer_d.load_state_dict( checkpoint['optimizer_d'])
scheduler_g = torch.optim.lr_scheduler.LambdaLR(optimizer_g, adjustLearningRate( 150, 150),last_epoch=checkpoint["epoch"])
scheduler_d = torch.optim.lr_scheduler.LambdaLR(optimizer_d, adjustLearningRate( 150, 150),last_epoch=checkpoint["epoch"])
else:
scheduler_g = torch.optim.lr_scheduler.LambdaLR(optimizer_g, adjustLearningRate( 150, 150))
scheduler_d = torch.optim.lr_scheduler.LambdaLR(optimizer_d, adjustLearningRate( 150, 150))
#initialize weight penalty adaper
if continue_checkpoint:
LambdaAdapt = checkpoint["adapter"]
#LambdaAdapt.netD_times=50
else:
LambdaAdapt = LambdaAdapter(LAMBDA,D_G_ratio)
generatorX.train()
generatorX_.train()
generatorY.train()
generatorY_.train()
discriminatorX.train()
discriminatorY.train()
generator_loss = []
discriminator_loss = []
if continue_checkpoint:
start_epoch = checkpoint['epoch']
batches_done = checkpoint['batches_done']
#batches_done = checkpoint['batches_done']
g_loss = checkpoint['g_loss']
d_loss = checkpoint['d_loss']
else:
start_epoch=0
batches_done = 0
#begin training
for epoch in range(start_epoch,NUM_EPOCHS_TRAIN):
for i, (data, gt1) in enumerate(trainLoader_cross, 0):
input, maskInput= data
groundTruth, maskEnhanced = gt1
maskInput = Variable(maskInput.type(Tensor_gpu))
maskEnhanced = Variable(maskEnhanced.type(Tensor_gpu))
realInput = Variable(input.type(Tensor_gpu)) # stands for X
realEnhanced = Variable(groundTruth.type(Tensor_gpu)) # stands for Y
fakeEnhanced = generatorX(realInput) # stands for Y'
fakeInput = generatorY(realEnhanced) # stands for x'
#train discriminator
set_requires_grad([discriminatorY,discriminatorX], True)
optimizer_d.zero_grad()
#calculate adversaria discriminator loss
ad = compute_d_adv_loss(discriminatorY,realEnhanced,fakeEnhanced ) + compute_d_adv_loss(discriminatorX,realInput,fakeInput)
gradient_penalty1 = compute_gradient_penalty(discriminatorY, realEnhanced, fakeEnhanced)
gradient_penalty2 = compute_gradient_penalty(discriminatorX, realInput,fakeInput)
LambdaAdapt.update_penalty_weights(batches_done ,gradient_penalty1,gradient_penalty2)
d_loss = computeDiscriminatorLossFor2WayGan(ad, LambdaAdapt.netD_gp_weight_1*gradient_penalty1 + LambdaAdapt.netD_gp_weight_2 * gradient_penalty2)
d_loss.backward()
torch.nn.utils.clip_grad_value_(itertools.chain(discriminatorY.parameters(),discriminatorX.parameters()),clip_value)
optimizer_d.step()
# use the lambda adapter to decide when to train the generators
#train generators
if (LambdaAdapt.netD_change_times_1 > 0 and LambdaAdapt.netD_times >= 0 and LambdaAdapt.netD_times % LambdaAdapt.netD_change_times_1 == 0): # or (batches_done % 50 == 0):
LambdaAdapt.netD_times = 0
recInput = generatorY_(torch.clamp(fakeEnhanced,0,1)) # stands for x''
recEnhanced = generatorX_(torch.clamp(fakeInput,0,1)) # stands for y''
set_requires_grad([discriminatorY,discriminatorX], False)
optimizer_g.zero_grad()
#calclate adverarial gnerator loss
ag = compute_g_adv_loss(discriminatorY,discriminatorX, fakeEnhanced,fakeInput)
i_loss = computeIdentityMappingLoss_dpeversion(realInput* maskInput, realEnhanced*maskEnhanced, fakeInput*maskEnhanced, fakeEnhanced* maskInput)
#i_loss = computeIdentityMappingLoss(generatorX, generatorY, realEnhanced *maskEnhanced,realInput * maskInput)
c_loss = computeCycleConsistencyLoss(realInput * maskInput , recInput* maskInput , realEnhanced*maskEnhanced, recEnhanced*maskEnhanced)
g_loss = computeGeneratorLossFor2WayGan(ag, i_loss, c_loss)
g_loss.backward()
torch.nn.utils.clip_grad_value_(itertools.chain(generatorX.parameters(), generatorY.parameters()),clip_value)
optimizer_g.step()
del ag,i_loss,c_loss,recEnhanced,recInput#x2,y2 #,g_loss
if torch.cuda.is_available() :
torch.cuda.empty_cache()
else:
gc.collect()
#save checkpoints to restart training
# Testing Network
if batches_done % 150 == 0:
psnr=0
d_test_loss=0
generatorX.eval()
discriminatorY.eval()
with torch.no_grad():
for j, (data_t, gt1_t) in enumerate(testLoader, 0):
input_test, maskInput_test = data_t
Testgt, maskEnhanced_test = gt1_t
maskInput_test = Variable(maskInput_test.type(Tensor_gpu))
maskEnhanced_test = Variable(maskEnhanced_test.type(Tensor_gpu))
realInput_test = Variable(input_test.type(Tensor_gpu))
realEnhanced_test = Variable(Testgt.type(Tensor_gpu))
fakeEnhanced_test = generatorX(realInput_test)
test_loss = criterion( realEnhanced_test*maskEnhanced_test,torch.clamp(fakeEnhanced_test,0,1)*maskInput_test )
#psnr is okey because answers are from zero to one...we should check clamping in between (?)
psnr = psnr + 10 * torch.log10(1 / (test_loss))
d_test_loss = d_test_loss + torch.mean(discriminatorY(fakeEnhanced_test))-torch.mean(discriminatorY(realEnhanced_test))
psnrAvg = psnr/(j+1)
d_test_lossAvg = d_test_loss /(j+1)
print("Loss loss: %f" % test_loss)
print("DLoss loss: %f" % d_test_lossAvg)
print("PSNR Avg: %f" % (psnrAvg ))
f = open("./models/dtest_loss_trailing.txt", "a+")
f.write("dtest_loss_Avg: %f" % ( d_test_lossAvg ))
f.close()
f = open("./models/psnr_Score_trailing.txt", "a+")
f.write("PSNR Avg: %f" % (psnrAvg ))
f.close()
writer1.add_scalar('PSNR test',psnrAvg,batches_done)
#save exampes of geneted images ion test
if batches_done % 1200 == 0:
for k in range(0, fakeEnhanced_test.data.shape[0]):
save_image((fakeEnhanced_test*maskInput_test).data[k],
"./models/train_test_images/2Way/2Way_Train_Test_%d_%d_%d.png" % (epoch, batches_done, k),
nrow=1, normalize=True)
del fakeEnhanced_test ,realEnhanced_test , realInput_test, gt1_t, data_t,maskInput_test,maskEnhanced_test ,Testgt, input_test, test_loss
if torch.cuda.is_available() :
torch.cuda.empty_cache()
else:
gc.collect()
generatorX.train()
discriminatorY.train()
if batches_done % 1200 == 0:
if GPUS_NUM >1:
torch.save({'generatorX':generatorX.module.state_dict(),'generatorX_':generatorX_.module.state_dict(),
'generatorY':generatorY.module.state_dict(),'generatorY_':generatorY_.module.state_dict(),
'discriminatorY':discriminatorY.module.state_dict(),'discriminatorX':discriminatorX.module.state_dict(),
'optimizer_g':optimizer_g.state_dict(),'optimizer_d':optimizer_d.state_dict(),
'adapter':LambdaAdapt,
'g_loss':g_loss,'d_loss':d_loss,
#'summary_writer': writer1,
'epoch':epoch,'batches_done':batches_done},'./models/train_checkpoint/2Way/full_train_' + str(epoch) + '_' + str(i) + '.pth')
else:
torch.save({'generatorX':generatorX.state_dict(),'generatorX_':generatorX_.state_dict(),
'generatorY':generatorY.state_dict(),'generatorY_':generatorY_.state_dict(),
'discriminatorY':discriminatorY.state_dict(),'discriminatorX':discriminatorX.state_dict(),
'optimizer_g':optimizer_g.state_dict(),'optimizer_d':optimizer_d.state_dict(),
'adapter':LambdaAdapt,
'g_loss':g_loss,'d_loss':d_loss,
#'summary_writer': writer1,
'epoch':epoch,'batches_done':batches_done},'./models/train_checkpoint/2Way/full_train_' + str(epoch) + '_' + str(i) + '.pth')
batches_done += 1
LambdaAdapt.netD_times += 1
print("Done training discriminator on iteration: %d" % i)
print("[Epoch %d/%d] [Batch %d/%d] [lr: %f] [D loss: %f] [G loss: %f] [ad loss: %f] [gp1 loss: %f] [gp2 loss: %f][wp1 loss: %f] [wp2 loss: %f] " % (
epoch + 1, NUM_EPOCHS_TRAIN, i + 1,len(trainLoader_cross),scheduler_g.get_last_lr()[0] , d_loss.item(), g_loss.item(),
ad,gradient_penalty1,gradient_penalty2,LambdaAdapt.netD_gp_weight_1,LambdaAdapt.netD_gp_weight_2 ))
writer1.add_scalars("losses", {'D loss':d_loss.item(), 'G loss':g_loss.item(),
'ad loss':ad, 'gp1 loss':gradient_penalty1,'gp2 loss':gradient_penalty2,'weight pen 1':LambdaAdapt.netD_gp_weight_1,'weight pen 2':LambdaAdapt.netD_gp_weight_2 }, batches_done)
f = open("./models/log_Train.txt", "a+")
f.write("[Epoch %d/%d] [Batch %d/%d] [D loss: %f] [G loss: %f]\n" % (
epoch + 1, NUM_EPOCHS_TRAIN, i + 1, len(trainLoader_cross), d_loss.item(), g_loss.item()))
f.close()
#step schedulers:
scheduler_g.step()
scheduler_d.step()
# TEST NETWORK
batches_done = 0
# Training Network
dataiter = iter(testLoader)
gt_test, data_test = dataiter.next()
input_test, dummy = data_test
Testgt, dummy = gt_test
with torch.no_grad():
psnrAvg = 0.0
for j, (data, gt) in enumerate(testLoader, 0):
input, dummy = data
groundTruth, dummy = gt
trainInput = Variable(input.type(Tensor_gpu))
realImgs = Variable(groundTruth.type(Tensor_gpu))
output = generatorX(trainInput)
loss = criterion(output, realImgs)
psnr = 10 * torch.log10(1 / loss)
psnrAvg += psnr
for k in range(0, output.data.shape[0]):
save_image(output.data[k],
"./models/test_images/2Way/test_%d_%d_%d.png" % (batches_done + 1, j + 1, k + 1),
nrow=1,
normalize=True)
for k in range(0, realImgs.data.shape[0]):
save_image(realImgs.data[k],
"./models/gt_images/2Way/gt_%d_%d_%d.png" % (batches_done + 1, j + 1, k + 1),
nrow=1,
normalize=True)
for k in range(0, trainInput.data.shape[0]):
save_image(trainInput.data[k],
"./models/input_images/2Way/input_%d_%d_%d.png" % (batches_done + 1, j + 1, k + 1), nrow=1,
normalize=True)
batches_done += 5
print("Loss loss: %f" % loss)
print("PSNR Avg: %f" % (psnrAvg / (j + 1)))
f = open("./models/psnr_Score.txt", "a+")
f.write("PSNR Avg: %f" % (psnrAvg / (j + 1)))
f = open("./models/psnr_Score.txt", "a+")
f.write("Final PSNR Avg: %f" % (psnrAvg / len(testLoader)))
print("Final PSNR Avg: %f" % (psnrAvg / len(testLoader)))
end_time = datetime.now()
print(end_time - start_time)