-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgenerate.py
207 lines (176 loc) · 12.8 KB
/
generate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
# Copyright (c) 2022, NVIDIA CORPORATION & AFFILIATES. All rights reserved.
#
# This work is licensed under a Creative Commons
# Attribution-NonCommercial-ShareAlike 4.0 International License.
# You should have received a copy of the license along with this
# work. If not, see http://creativecommons.org/licenses/by-nc-sa/4.0/
"""Generate random images using the techniques described in the paper
"Elucidating the Design Space of Diffusion-Based Generative Models"."""
import os
import click
import tqdm
import pickle
import numpy as np
import torch
import PIL.Image
import tensorflow as tf
import io
from torchvision.utils import make_grid, save_image
import classifier_lib
#----------------------------------------------------------------------------
# Proposed EDM-G++ sampler.
def edm_sampler(
boosting, time_min, time_max, vpsde, dg_weight_1st_order, dg_weight_2nd_order, discriminator,
net, latents, class_labels=None, randn_like=torch.randn_like,
num_steps=18, sigma_min=0.002, sigma_max=80, rho=7,
S_churn=0, S_min=0, S_max=float('inf'), S_noise=1,
):
# Adjust noise levels based on what's supported by the network.
sigma_min = max(sigma_min, net.sigma_min)
sigma_max = min(sigma_max, net.sigma_max)
# Time step discretization.
step_indices = torch.arange(num_steps, dtype=torch.float64, device=latents.device)
t_steps = (sigma_max ** (1 / rho) + step_indices / (num_steps - 1) * (sigma_min ** (1 / rho) - sigma_max ** (1 / rho))) ** rho
t_steps = torch.cat([net.round_sigma(t_steps), torch.zeros_like(t_steps[:1])]) # t_N = 0
## Settings for boosting
S_churn_manual = 4.
S_noise_manual = 1.000
period = 5
period_weight = 2
log_ratio = torch.tensor([np.inf] * latents.shape[0], device=latents.device)
S_churn_vec = torch.tensor([S_churn] * latents.shape[0], device=latents.device)
S_churn_max = torch.tensor([np.sqrt(2) - 1] * latents.shape[0], device=latents.device)
S_noise_vec = torch.tensor([S_noise] * latents.shape[0], device=latents.device)
# Main sampling loop.
x_next = latents.to(torch.float64) * t_steps[0]
for i, (t_cur, t_next) in enumerate(zip(t_steps[:-1], t_steps[1:])): # 0, ..., N-1
x_cur = x_next
S_churn_vec_ = S_churn_vec.clone()
S_noise_vec_ = S_noise_vec.clone()
if i % period == 0:
if boosting:
S_churn_vec_[log_ratio < 0.] = S_churn_manual
S_noise_vec_[log_ratio < 0.] = S_noise_manual
# Increase noise temporarily.
# gamma = min(S_churn / num_steps, np.sqrt(2) - 1) if S_min <= t_cur <= S_max else 0
gamma_vec = torch.minimum(S_churn_vec_ / num_steps, S_churn_max) if S_min <= t_cur <= S_max else torch.zeros_like(S_churn_vec_)
t_hat = net.round_sigma(t_cur + gamma_vec * t_cur)
x_hat = x_cur + (t_hat ** 2 - t_cur ** 2).sqrt()[:, None, None, None] * S_noise_vec_[:, None, None,None] * randn_like(x_cur)
#x_hat = x_cur + (t_hat ** 2 - t_cur ** 2).sqrt() * S_noise * randn_like(x_cur)
# Euler step.
denoised = net(x_hat, t_hat, class_labels).to(torch.float64)
d_cur = (x_hat - denoised) / t_hat[:, None, None, None]
## DG correction
if dg_weight_1st_order != 0.:
discriminator_guidance, log_ratio = classifier_lib.get_grad_log_ratio(discriminator, vpsde, x_hat, t_hat, net.img_resolution, time_min, time_max, class_labels, log=True)
if boosting:
if i % period_weight == 0:
discriminator_guidance[log_ratio < 0.] *= 2.
d_cur += dg_weight_1st_order * (discriminator_guidance / t_hat[:, None, None, None])
x_next = x_hat + (t_next - t_hat)[:, None, None, None] * d_cur
# Apply 2nd order correction.
if i < num_steps - 1:
denoised = net(x_next, t_next, class_labels).to(torch.float64)
d_prime = (x_next - denoised) / t_next
## DG correction
if dg_weight_2nd_order != 0.:
discriminator_guidance = classifier_lib.get_grad_log_ratio(discriminator, vpsde, x_next, t_next, net.img_resolution, time_min, time_max, class_labels, log=False)
d_prime += dg_weight_2nd_order * (discriminator_guidance / t_next)
x_next = x_hat + (t_next - t_hat)[:, None, None, None] * (0.5 * d_cur + 0.5 * d_prime)
return x_next
#----------------------------------------------------------------------------
@click.command()
@click.option('--network', 'network_pkl', help='Network pickle filename', metavar='PATH|URL', type=str, required=True)
@click.option('--outdir', help='Where to save the output images', metavar='DIR', type=str, required=True)
@click.option('--class', 'class_idx', help='Class label [default: random]', metavar='INT', type=click.IntRange(min=0), default=None)
@click.option('--batch', 'batch_size', help='Maximum batch size', metavar='INT', type=click.IntRange(min=1), default=100, show_default=True)
@click.option('--steps', 'num_steps', help='Number of sampling steps', metavar='INT', type=click.IntRange(min=1), default=18, show_default=True)
@click.option('--sigma_min', help='Lowest noise level [default: varies]', metavar='FLOAT', type=click.FloatRange(min=0, min_open=True))
@click.option('--sigma_max', help='Highest noise level [default: varies]', metavar='FLOAT', type=click.FloatRange(min=0, min_open=True))
@click.option('--rho', help='Time step exponent', metavar='FLOAT', type=click.FloatRange(min=0, min_open=True), default=7, show_default=True)
@click.option('--S_churn', 'S_churn', help='Stochasticity strength', metavar='FLOAT', type=click.FloatRange(min=0), default=0, show_default=True)
@click.option('--S_min', 'S_min', help='Stoch. min noise level', metavar='FLOAT', type=click.FloatRange(min=0), default=0, show_default=True)
@click.option('--S_max', 'S_max', help='Stoch. max noise level', metavar='FLOAT', type=click.FloatRange(min=0), default='inf', show_default=True)
@click.option('--S_noise', 'S_noise', help='Stoch. noise inflation', metavar='FLOAT', type=float, default=1, show_default=True)
@click.option('--solver', help='Ablate ODE solver', metavar='euler|heun', type=click.Choice(['euler', 'heun']))
@click.option('--disc', 'discretization', help='Ablate time step discretization {t_i}', metavar='vp|ve|iddpm|edm', type=click.Choice(['vp', 've', 'iddpm', 'edm']))
@click.option('--schedule', help='Ablate noise schedule sigma(t)', metavar='vp|ve|linear', type=click.Choice(['vp', 've', 'linear']))
@click.option('--scaling', help='Ablate signal scaling s(t)', metavar='vp|none', type=click.Choice(['vp', 'none']))
#---------------------------------------------------------------------------- Options for Discriminator-Guidance
## Sampling configureation
@click.option('--do_seed', help='Applying manual seed or not', metavar='INT', type=click.IntRange(min=0), default=0, show_default=True)
@click.option('--seed', help='Seed number', metavar='INT', type=click.IntRange(min=0), default=0, show_default=True)
@click.option('--num_samples', help='Num samples', metavar='INT', type=click.IntRange(min=1), default=50000, show_default=True)
@click.option('--save_type', help='png or npz', metavar='png|npz', type=click.Choice(['png', 'npz']), default='npz')
@click.option('--device', help='Device', metavar='STR', type=str, default='cuda:0')
## DG configuration
@click.option('--dg_weight_1st_order', help='Weight of DG for 1st prediction', metavar='FLOAT', type=click.FloatRange(min=0), default=2., show_default=True)
@click.option('--dg_weight_2nd_order', help='Weight of DG for 2nd prediction', metavar='FLOAT', type=click.FloatRange(min=0), default=0., show_default=True)
@click.option('--time_min', help='Minimum time[0,1] to apply DG', metavar='FLOAT', type=click.FloatRange(min=0., max=1.), default=0.01, show_default=True)
@click.option('--time_max', help='Maximum time[0,1] to apply DG', metavar='FLOAT', type=click.FloatRange(min=0., max=1.), default=1.0, show_default=True)
@click.option('--boosting', help='If true, dg scale up low log ratio samples', metavar='INT', type=click.IntRange(min=0), default=0, show_default=True)
## Discriminator checkpoint
@click.option('--pretrained_classifier_ckpt',help='Path of ADM classifier(latent extractor)', metavar='STR', type=str, default='/checkpoints/ADM_classifier/32x32_classifier.pt', show_default=True)
@click.option('--discriminator_ckpt', help='Path of discriminator', metavar='STR', type=str, default='/checkpoints/discriminator/cifar_uncond/discriminator_60.pt', show_default=True)
## Discriminator architecture
@click.option('--cond', help='Is it conditional discriminator?', metavar='INT', type=click.IntRange(min=0, max=1), default=0, show_default=True)
def main(boosting, time_min, time_max, dg_weight_1st_order, dg_weight_2nd_order, cond, pretrained_classifier_ckpt, discriminator_ckpt, save_type, batch_size, do_seed, seed, num_samples, network_pkl, outdir, class_idx, device, **sampler_kwargs):
## Set seed
if do_seed:
import random
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
## Load pretrained score network.
print(f'Loading network from "{network_pkl}"...')
with open(network_pkl, 'rb') as f:
net = pickle.load(f)['ema'].to(device)
## Load discriminator
discriminator = None
if dg_weight_1st_order != 0 or dg_weight_2nd_order != 0:
discriminator = classifier_lib.get_discriminator(pretrained_classifier_ckpt, discriminator_ckpt,
net.label_dim and cond, net.img_resolution, device, enable_grad=True)
print(discriminator)
vpsde = classifier_lib.vpsde()
## Loop over batches.
num_batches = num_samples // batch_size + 1
print(f'Generating {num_samples} images to "{outdir}"...')
os.makedirs(outdir, exist_ok=True)
for i in tqdm.tqdm(range(num_batches)):
## Pick latents and labels.
latents = torch.randn([batch_size, net.img_channels, net.img_resolution, net.img_resolution], device=device)
class_labels = None
if net.label_dim:
class_labels = torch.eye(net.label_dim, device=device)[torch.randint(net.label_dim, size=[batch_size], device=device)]
if class_idx is not None:
class_labels[:, :] = 0
class_labels[:, class_idx] = 1
## Generate images.
sampler_kwargs = {key: value for key, value in sampler_kwargs.items() if value is not None}
images = edm_sampler(boosting, time_min, time_max, vpsde, dg_weight_1st_order, dg_weight_2nd_order, discriminator, net, latents, class_labels, randn_like=torch.randn_like, **sampler_kwargs)
## Save images.
images_np = (images * 127.5 + 128).clip(0, 255).to(torch.uint8).permute(0, 2, 3, 1).cpu().numpy()
if save_type == "png":
count = 0
for image_np in images_np:
image_path = os.path.join(outdir, f'{i*batch_size+count:06d}.png')
count += 1
PIL.Image.fromarray(image_np, 'RGB').save(image_path)
elif save_type == "npz":
r = np.random.randint(1000000)
with tf.io.gfile.GFile(os.path.join(outdir, f"samples_{r}.npz"), "wb") as fout:
io_buffer = io.BytesIO()
if class_labels == None:
np.savez_compressed(io_buffer, samples=images_np)
else:
np.savez_compressed(io_buffer, samples=images_np, label=class_labels.cpu().numpy())
fout.write(io_buffer.getvalue())
nrow = int(np.sqrt(images_np.shape[0]))
image_grid = make_grid(torch.tensor(images_np).permute(0, 3, 1, 2) / 255., nrow, padding=2)
with tf.io.gfile.GFile(os.path.join(outdir, f"sample_{r}.png"), "wb") as fout:
save_image(image_grid, fout)
#----------------------------------------------------------------------------
if __name__ == "__main__":
main()
#----------------------------------------------------------------------------