-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.m
422 lines (360 loc) · 11 KB
/
main.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
% Uncomment addpath statements for server use
% addpath('/cm/shared/apps/ibm/ILOG/CPLEX_Studio128/cplex/matlab/')
% addpath('/cm/shared/apps/ibm/ILOG/CPLEX_Studio128/cplex/matlab/x86-64_linux/')
% addpath('/cm/shared/apps/ibm/ILOG/CPLEX_Studio128/cplex/matlab/x86-64_linux/help')
% addpath('/cm/shared/apps/ibm/ILOG/CPLEX_Studio128/cplex/matlab/x86-64_linux/help/helpsearch-v2/')
% addpath('/cm/shared/apps/ibm/ILOG/CPLEX_Studio128/cplex/matlab/x86-64_linux/help/topics/')
%% MILP Formulation of Multi-Robot Long-Term Persistent Coverage Problem
%
% Reference: D. Mitchell, M. Corah, N. Chakraborty, K. Sycara and
% N. Michael, "Multi-robot long-term persistent coverage with fuel
% constrained robots," 2015 IEEE (ICRA)
%
% $Author Dharini Dutia ` $Created June 2018
%
%
%%%%%%%%%%%%%%%%%%%%%%%%%% Initialization %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Cleanup
clc; clear all; close all;
% Mersenne-Twister with seed 0
% This makes the current execution repeatable
%rng('default');
% Defining the environment
% Nodes
T = input('Enter number of target nodes = '); targets = 1:1:T;
D = input('Number of depots = '); depots = T+1:1:T+D;
N = T+D; total_nodes = [targets,depots];
% Number of robots
K = input('Number of robots = ');
% Fuel capacity
L = input(strcat('Whats the fuel capacity? Enter value between 1 to ',int2str(2*T), ' ')); %todo :revise
% Ratio of time needed to refuel and time spent traversing the tour
qk = 0.5*ones(K,1);%rand(K,1)/2;
% Define the starting point of the robots
Bk = randi([depots(1),depots(D)],K,1);%depots(1:K); %starting from depots
%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Node Generation %%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Targets
xt = randi(25,T,1);
yt = randi(25,T,1);
% xt = [11;3;7;11;15;7;16;18;6;3]; % For testing
% yt = [8;8;11;13;3;7;21;1;24;19];
% Depots
xd = randi(25,D,1);
yd = randi(25,D,1);
% xd = [13;15;6];
% yd = [12;25;14];
% Combining the co-ordinates
x_pos = [xt',xd'];
y_pos = [yt',yd'];
nodes = [x_pos',y_pos'];
% Shortest distance between the nodes
e_dist = pdist2(nodes,nodes);
% cij = time required to traverse each edges
cij_per_robot = reshape(e_dist',N^2,1);
% if robots' velocities are not equivalent:
% use next block to obtain different cij for each robot
% cij=zeros(total_nodes^2 *K,1);
% for k=1:K
% cij(1+(k-1)*total_nodes^2:(k*total_nodes^2),1)=cij_per_robot;
% end
% Mapping distance between nodes to battery levels
alpha = 0.1;
mapping = e_dist*alpha;
% Fuel cost between two nodes
fij = [L*mapping(1:T,1:T),0.5*L*ones(T,D); ...
0.5*L*ones(D,T),0.8*L*ones(D,D)];
%%%%%%%%%%%%%%%%%%%%%%%%%% Decision variables %%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% SYMBOL : DESCRIPTION [MULTIPLICITY]
%
% Pmax : max path length among robots [1]
% x_kij : {0,1} for k in K, i,j in N [K * N * N]
% p_kij : {0,1,...,T} for k in K, i,j in N [K * N * N]
% ri(k) : {0,1,...,L} for i in T [T * K]
% Total number of variables
total_vars = 1 + (N^2 *K)*2 + T*K;
% Obtaining ctype: for CPLEX MILP solver
ctype(1) = char('C');
for i =2:total_vars
ctype(i) = char('I');
end
for k=1:K
for i=1:N
for j=1:T
ctype(j+(i-1)*N+(k-1)*N^2 +1) = char('B');
end
end
end
% Objective function to be minimized
f = [1;zeros((N^2 *K)*2 + T*K,1)];
%% Integer (bound) constraints
% Equation 4
lb1 = zeros(N^2 *K,1); %size of X
% upper bound 1 for targets and |T| for depots
ub1 = T*ones(N^2 *K,1);
for k=1:K
for i=1:N
for j=1:T
% Equation 5
ub1(j+(i-1)*N+(k-1)*N^2,1) = 1;
end
end
end
% Equation 14 - Part 1/2
lb2 = zeros(N^2 *K,1);
ub2 = T*ones(N^2 *K,1);
% Equation 20
lb3 = zeros(T*K,1);
ub3 = L*ones(T*K,1);
lb = [0;lb1;lb2;lb3];
ub = [Inf;ub1;ub2;ub3];
%% Including the constraint of Pmax
% minmax -> min constraint
% Equation 3
bineq_pmax = zeros(K,1);
temp = zeros(K,N^2 *K);
for k=1:K
for i=1:N
for j=1:N
temp(k,j+(i-1)*N+(k-1)*N^2) =(1+qk(k))*cij_per_robot(j+(i-1)*N);
end
end
end
Aineq_pmax = [-1*ones(K,1),temp,zeros(K,(N^2 *K) + T*K)];
%% Degree Constraints
% To ensure only one robot arrives and depart from each target
Aeq6_7 = zeros(T*2,N^2 *K);
for k=1:K
for i=1:T
for j=1:N
% Equation 6
Aeq6_7(i,j+(i-1)*N+(k-1)*N^2) = 1;
% Equation 7
Aeq6_7(i+T, i+(j-1)*N+(k-1)*N^2) = 1;
end
end
end
Aeq6_7 = [zeros(T*2,1),Aeq6_7,zeros(T*2,N^2 *K+T*K)];
beq6_7 = ones(T*2,1);
% Robot begins and end at starting position
Aineq8_9 = zeros(K*2,N^2 *K);
for k=1:K
for i=1:N
% Equation 8
Aineq8_9(k,i+(Bk(k)-1)*N+(k-1)*N^2) = 1;
% Equation 9
Aineq8_9(k+K,Bk(k)+(i-1)*N+(k-1)*N^2) = 1;
end
end
Aineq8_9 = [zeros(K*2,1),Aineq8_9, zeros(K*2,N^2 *K +T*K)];
bineq8_9 = ones(K*2,1);
% Every robot visits a target, leaves it
% Equation 10
Aeq10 = zeros(N*K,N^2 *K);
for k=1:K
for i=1:N
for j=1:N
Aeq10(i+(k-1)*N,j +(i-1)*N +(k-1)*N^2) = -1;
Aeq10(i+(k-1)*N,i +(j-1)*N +(k-1)*N^2) = 1;
end
end
end
Aeq10 = [zeros(N*K,1),Aeq10,zeros(N*K,N^2 *K+T*K)];
beq10 = zeros(N*K,1);
% %%%%%%%%%%%%%%%%%%%%%%%%%%%% Block test 1/2 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% bineq = [bineq_pmax;bineq8_9];
% Aineq = [Aineq_pmax;Aineq8_9];
%
% beq = [beq6_7;beq10];
% Aeq = [Aeq6_7;Aeq10];
%
% X = cplexmilp(f,Aineq,bineq,Aeq,beq,[],[],[],lb,ub,ctype)
%
% % Visualization
% if ~isempty(X)
% adaj = zeros(N,N);
% for k=1:K
% start = 2+(k-1)*N^2;
% A(:,:,k) = transpose(reshape(X(start:start+N^2 -1),[N,N]));
%
% map(A(:,:,k), k, T, D, K, N, x_pos, y_pos, L);
% end
% end
%% Capacity & Flow Constraints
% Equation 11: flow through the starting node
x_Aeq11 = zeros(K,(N^2 *K));
p_Aeq11 = zeros(K,(N^2 *K));
for k=1:K
for i=1:N
for j=1:N
if i<=T
x_Aeq11(k,j+(i-1)*N+(k-1)*N^2) = -1;
end
end
if i~= Bk(k)
p_Aeq11(k,i+(Bk(k)-1)*N+(k-1)*N^2) = 1;
p_Aeq11(k,Bk(k)+(i-1)*N+(k-1)*N^2) = -1;
end
end
end
Aeq11 = [zeros(K,1),x_Aeq11,p_Aeq11,zeros(K,T*K)];
beq11 = zeros(K,1);
% Equation 12 : Capacity updated after visiting each node
x_Aeq12 = zeros(T*K,(N^2 *K));
p_Aeq12 = zeros(T*K,(N^2 *K));
for k=1:K
for i=1:T
for j=1:N
x_Aeq12(i+(k-1)*T,j+(i-1)*N+(k-1)*N^2) = -1;
if j~=i
p_Aeq12(i+(k-1)*T,j +(i-1)*N +(k-1)*N^2) = -1;
p_Aeq12(i+(k-1)*T,i +(j-1)*N +(k-1)*N^2) = 1;
end
end
end
end
Aeq12 = [zeros(T*K,1),x_Aeq12,p_Aeq12,zeros(T*K,T*K)];
beq12 = zeros(T*K,1);
% Equation 13 : Capacity remains the same after passing a depot
x_Aeq13 = zeros(D*K,(N^2 *K));
p_Aeq13 = zeros(D*K,(N^2 *K));
count = 1;
for k=1:K
for i=T+1:N
for j=1:N
if j~=i && i~=Bk(k)
p_Aeq13(count,j +(i-1)*N +(k-1)*N^2) = 1;
p_Aeq13(count,i +(j-1)*N +(k-1)*N^2) = -1;
end
end
count = count +1;
end
end
Aeq13 = [zeros(D*K,1),x_Aeq13, p_Aeq13,zeros(D*K,T*K)];
beq13 = zeros(D*K,1);
%Equation 14 - Part 2/2
% target capacity should not exceed T
count = 1;
x_Aineq14 = zeros(N^2 *K,(N^2 *K));
p_Aineq14 = zeros(N^2 *K,(N^2 *K));
for k=1:K
for i=1:N
for j=1:N
p_Aineq14(count,j+(i-1)*N+(k-1)*N^2) = 1;
x_Aineq14(count,j+(i-1)*N+(k-1)*N^2) = -T;
count = count+1;
end
end
end
Aineq14 = [zeros(N^2*K,1),x_Aineq14,p_Aineq14,zeros(N^2 *K,T*K)];
bineq14 = zeros(N^2 *K,1);
%%%%%%%%%%%%%%%%%%%%%%%%%%%% Block test 2/2 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% bineq = [bineq_pmax;bineq8_9;bineq14];
% Aineq = [Aineq_pmax;Aineq8_9;Aineq14];
%
% beq = [beq6_7;beq10;beq11;beq12;beq13];
% Aeq = [Aeq6_7;Aeq10;Aeq11;Aeq12;Aeq13];
%
% X = cplexmilp(f,Aineq,bineq,Aeq,beq,[],[],[],lb,ub,ctype)
%
% % Visualization
% if ~isempty(X)
% adaj = zeros(N,N);
% for k=1:K
% start = 2+(k-1)*N^2;
% A(:,:,k) = transpose(reshape(X(start:start+N^2 -1),[N,N]));
%
% map(A(:,:,k), k, T, D, K, N, x_pos, y_pos, L);
% end
% end
%% Fuel Constraints
% Large constant
M = (L + max(fij(:)));
% Equation 15 & 16
% fuel lost between two nodes = fuel cost of travelling between them
r_Aineq15_16 = zeros(T^2 *K *2,T*K);
x_Aineq15_16 = zeros(T^2 *K *2,(N^2 *K));
count = 1;
for k=1:K
for i=1:T
for j=1:T
% Equation 15
%if j~= i %not sure
r_Aineq15_16(count,j+(k-1)*T) = 1;
r_Aineq15_16(count,i+(k-1)*T) = -1;
%end
x_Aineq15_16(count,j+(i-1)*N+(k-1)*N^2) = M;
% Equation 16
%if j~= i %not sure
r_Aineq15_16(T^2 *K+count,j+(k-1)*T) = -1;
r_Aineq15_16(T^2 *K+count,i+(k-1)*T) = 1;
%end
x_Aineq15_16(T^2 *K+count,j+(i-1)*N+(k-1)*N^2) = M;
count = count+1;
end
end
end
Aineq15_16 = [zeros(T^2 *K *2,1),x_Aineq15_16,zeros(T^2 *K*2,(N^2 *K)),r_Aineq15_16];
bineq15_16 = [(M-fij(i,j))*ones(T^2 *K,1); (M+fij(i,j))*ones(T^2 *K,1)];
% Equation 17 & 18
% fuel level at target visited after leaving a depot = fuel capacity - fuel
% cost of traversal
r_Aineq17_18 = zeros(D*T*K *2,T*K);
x_Aineq17_18 = zeros(D*T*K *2,(N^2 *K));
count = 1;
for k=1:K
for i=T+1:N
for j=1:T
% Equation 17
r_Aineq17_18(count,j+(k-1)*T) = -1;
x_Aineq17_18(count,j+(i-1)*N+(k-1)*N^2) = M;
% Equation 18
r_Aineq17_18(D*T*K+count,j+(k-1)*T) = 1;
x_Aineq17_18(D*T*K+count,j+(i-1)*N+(k-1)*N^2) = M;
count = count+1;
end
end
end
Aineq17_18 = [zeros(D*T*K *2,1),x_Aineq17_18,zeros(D*T*K*2,(N^2 *K)),r_Aineq17_18];
bineq17_18 = [(M-L+fij(i,j))*ones(D*T*K,1); (M+L-fij(i,j))*ones(D*T*K,1)];
% Equation 19
% restricts fuel lost in approaching a depot to being most the cost to
% travel from the preceding target
r_Aineq19 = zeros(T*D*K,T*K);
x_Aineq19 = zeros(T*D*K,(N^2 *K));
count = 1;
for k=1:K
for i=1:T
for j=T+1:N
r_Aineq19(count,i+(k-1)*T) = -1;
x_Aineq19(count,j+(i-1)*N+(k-1)*N^2) = M;
count = count+1;
end
end
end
Aineq19 = [zeros(T*D*K,1),x_Aineq19,zeros(T*D*K,(N^2 *K)),r_Aineq19];
bineq19 = (M-fij(i,j))*ones(T*D*K,1);
%% CPLEX optimization
% Combining the matrices
bineq = [bineq_pmax;bineq8_9;bineq14;bineq15_16;bineq17_18;bineq19];
Aineq = [Aineq_pmax;Aineq8_9;Aineq14;Aineq15_16;Aineq17_18;Aineq19];
beq = [beq6_7;beq10;beq11;beq12;beq13];
Aeq = [Aeq6_7;Aeq10;Aeq11;Aeq12;Aeq13];
% To get the total number of in/equality equations
[m,~] = size(beq);
[n,~] = size(bineq);
eq_count = m;
ineq_count = n;
%%%%%%%%%%%%%%%%%%%%%%%%%%% Final formulation %%%%%%%%%%%%%%%%%%%%%%%%%%%%%
tic
X = cplexmilp(f,Aineq,bineq,Aeq,beq,[],[],[],lb,ub,ctype)
toc
% Visualization
if ~isempty(X)
adaj = zeros(N,N);
for k=1:K
start = 2+(k-1)*N^2;
A(:,:,k) = transpose(reshape(X(start:start+N^2 -1),[N,N]));
map(A(:,:,k), k, T, D, K, N, x_pos, y_pos, L);
end
end