From 50d55f65116e1ea46bd86357d715f9230a1cc411 Mon Sep 17 00:00:00 2001 From: Edward Hartnett <38856240+edwardhartnett@users.noreply.github.com> Date: Thu, 10 Oct 2024 13:06:06 -0600 Subject: [PATCH] documentation for blending_fv3.py (#517) * added docs to blending_fv3.py * added requirements --------- --- docs/requirements.txt | 1 + ush/blending_fv3.py | 38 ++++++++++++++++++++++++++++++++++++++ 2 files changed, 39 insertions(+) diff --git a/docs/requirements.txt b/docs/requirements.txt index 817841744..c0691fdcb 100644 --- a/docs/requirements.txt +++ b/docs/requirements.txt @@ -3,5 +3,6 @@ sphinx_rtd_theme docutils==0.16 numpy netCDF4 +raymond xarray matplotlib diff --git a/ush/blending_fv3.py b/ush/blending_fv3.py index 374d6ea0f..41d9e56cf 100755 --- a/ush/blending_fv3.py +++ b/ush/blending_fv3.py @@ -1,9 +1,42 @@ +"""This script performs blending between regional and global weather +forecast model restarts using the Fortran module raymond. The Raymond +filter is a sixth-order tangent low-pass implicit filter and can be +controlled via the cutoff length scale (Lx). + +""" import numpy as np from netCDF4 import Dataset import raymond import sys def check_file_nans(test_nc, vars_fg, vars_bg, name): + """Check for NaN values in specified variables of a netCDF file. + + This function iterates over a list of variables and checks for NaN values in the provided + netCDF file. It prints the count of NaNs found for each variable and indicates whether + any NaNs were detected. + + Again, if there are any NaNs found, I wanted to catch that here + instead of later when the model is running. I don't think there is + any reason to expect NaNs. + + Parameters: + test_nc: Dataset + The test netCDF file containing the variables to be checked for NaN values. + vars_fg: list of str + A list of variable names from the regional model (foreground) to check. + vars_bg: list of str + A corresponding list of variable names from the global model (background) to check. + name: str + A string representing the context (e.g., 'glb' for global or 'reg' for regional) + to identify the source of the variables being checked. + + Returns: + bool + Returns True if any NaN values are found in the specified variables; + otherwise, returns False. + + """ nans = False for (var_fg, var_bg) in zip(vars_fg, vars_bg): i = vars_fg.index(var_fg) @@ -20,6 +53,11 @@ def check_file_nans(test_nc, vars_fg, vars_bg, name): return nans def err_check(err): + """ + Check for error. + + err: Error code. + """ if err > 0: print(f"An error ocurred in {sys.argv[0]}. Blending failed!!!") print(f"err={err}")