diff --git a/benchmarks/python/conftest.py b/benchmarks/python/conftest.py index 03adbe1e7dd..8d7812288e3 100644 --- a/benchmarks/python/conftest.py +++ b/benchmarks/python/conftest.py @@ -4,7 +4,7 @@ import pytest from .core import BENCHMARK_CONFIG from nvfuser.pytorch_utils import DEVICE_PROPERTIES - +from .global_params import DEFAULT_EXECUTORS def pytest_addoption(parser): parser.addoption( @@ -104,20 +104,18 @@ def pytest_collection_modifyitems(session, config, items): from nvfuser.pytorch_utils import retry_on_oom_or_skip_test - executors = ["eager", "torchcompile", "thunder"] - def get_test_executor(item) -> str | None: if hasattr(item, "callspec") and "executor" in item.callspec.params: test_executor = item.callspec.params["executor"] assert ( - test_executor in executors + test_executor in DEFAULT_EXECUTORS ), f"Expected executor to be one of 'eager', 'torchcompile', 'thunder', found {test_executor}." return test_executor return None executors_to_skip = [] - for executor in executors: + for executor in DEFAULT_EXECUTORS: if not config.getoption(f"--benchmark-{executor}"): executors_to_skip.append(executor) diff --git a/benchmarks/python/core.py b/benchmarks/python/core.py index acf296fb682..dd28bb981b8 100644 --- a/benchmarks/python/core.py +++ b/benchmarks/python/core.py @@ -12,7 +12,7 @@ import warnings import thunder from thunder.executors.nvfuserex import nvfuserex - +from .global_params import DEFAULT_EXECUTORS # These variables can be overwritten through CLI commands # --benchmark-rounds=rounds --benchmark-warmup-rounds=warmup_rounds @@ -47,7 +47,7 @@ def unary_bwd_torch(inputs: List): # [output, grad_out] inputs[0].backward(inputs[1], retain_graph=True) def with_executor(executor: str, fwd_fn: Callable) -> Callable: - assert executor in ["eager", "torchcompile", "thunder"] + assert executor in DEFAULT_EXECUTORS if executor == 'eager': return fwd_fn if executor == 'torchcompile': @@ -335,6 +335,9 @@ def run_benchmark( def setup(): clear_l2_cache() if device == "cuda": + for inp in inputs: + if isinstance(inp, torch.Tensor): + inp.grad = None return [inputs], {} # Device = 'host' diff --git a/benchmarks/python/global_params.py b/benchmarks/python/global_params.py index 2d52d4d96d2..df2f3da1d56 100644 --- a/benchmarks/python/global_params.py +++ b/benchmarks/python/global_params.py @@ -26,6 +26,8 @@ # Datatypes that will be promoted to Datatype.Float in Fusion Definitions PROMOTE_DTYPES = [DataType.BFloat16, DataType.Half] +#Default executors +DEFAULT_EXECUTORS = ["eager", "torchcompile", "thunder"] # Model Parameters from LLMs (GPT2/3, PaLM, LLama) # Embedding size: d_model, d_ff = 4 * d_model diff --git a/benchmarks/python/normalization.py b/benchmarks/python/normalization.py index a4f72242f4f..0da1e95ffe8 100644 --- a/benchmarks/python/normalization.py +++ b/benchmarks/python/normalization.py @@ -501,6 +501,6 @@ def norm_bwd_baseline_benchmark( run_benchmark( benchmark, unary_bwd_torch, - [outputs, grads], + [outputs, grads, *fwd_inputs], iobytes=norm_bwd_iobytes(size, dtype, norm), ) diff --git a/benchmarks/python/test_batchnorm_bwd.py b/benchmarks/python/test_batchnorm_bwd.py index 0a1cd64cc57..3fb83e91276 100644 --- a/benchmarks/python/test_batchnorm_bwd.py +++ b/benchmarks/python/test_batchnorm_bwd.py @@ -3,7 +3,7 @@ # SPDX-License-Identifier: BSD-3-Clause import pytest import torch -from .global_params import generate_input_sizes, FLOAT_DTYPES +from .global_params import generate_input_sizes, FLOAT_DTYPES, DEFAULT_EXECUTORS from .normalization import norm_bwd_nvf_benchmark, norm_bwd_baseline_benchmark @@ -31,7 +31,7 @@ def test_batchnorm_bwd_nvf_benchmark( ) -@pytest.mark.parametrize("executor", ["eager", "torchcompile"]) +@pytest.mark.parametrize("executor", DEFAULT_EXECUTORS) @pytest.mark.parametrize("size", generate_input_sizes(dims=4)) @pytest.mark.parametrize("dtype", FLOAT_DTYPES) @pytest.mark.parametrize("channels_last", [True, False]) diff --git a/benchmarks/python/test_batchnorm_fwd.py b/benchmarks/python/test_batchnorm_fwd.py index af197ce6f1b..921e42bc6d1 100644 --- a/benchmarks/python/test_batchnorm_fwd.py +++ b/benchmarks/python/test_batchnorm_fwd.py @@ -3,7 +3,7 @@ # SPDX-License-Identifier: BSD-3-Clause import pytest import torch -from .global_params import generate_input_sizes, FLOAT_DTYPES +from .global_params import generate_input_sizes, FLOAT_DTYPES, DEFAULT_EXECUTORS from .normalization import norm_fwd_nvf_benchmark, norm_fwd_baseline_benchmark @@ -31,7 +31,7 @@ def test_batchnorm_fwd_nvf_benchmark( ) -@pytest.mark.parametrize("executor", ["eager", "torchcompile"]) +@pytest.mark.parametrize("executor", DEFAULT_EXECUTORS) @pytest.mark.parametrize("size", generate_input_sizes(dims=4)) @pytest.mark.parametrize("dtype", FLOAT_DTYPES) @pytest.mark.parametrize("channels_last", [True, False]) diff --git a/benchmarks/python/test_broadcast_add_fwd.py b/benchmarks/python/test_broadcast_add_fwd.py index dcedb5a0ded..b1073b9537a 100644 --- a/benchmarks/python/test_broadcast_add_fwd.py +++ b/benchmarks/python/test_broadcast_add_fwd.py @@ -6,7 +6,7 @@ from nvfuser.pytorch_utils import torch_dtype_to_nvfuser_dtype from .core import run_benchmark, clear_dynamo_cache, with_executor import torch -from .global_params import generate_input_sizes, FLOAT_DTYPES, PROMOTE_DTYPES +from .global_params import generate_input_sizes, FLOAT_DTYPES, PROMOTE_DTYPES, DEFAULT_EXECUTORS def bcast_add_fusion( @@ -88,7 +88,7 @@ def test_bcast_add_nvf_benchmark( run_benchmark(benchmark, fd.execute, [bias, x]) -@pytest.mark.parametrize("executor", ["eager", "torchcompile"]) +@pytest.mark.parametrize("executor", DEFAULT_EXECUTORS) @pytest.mark.parametrize("size", generate_input_sizes(dims=2)) @pytest.mark.parametrize("dtype", FLOAT_DTYPES) @pytest.mark.parametrize("bcast_axis", [0, 1], ids=["outer", "inner"]) diff --git a/benchmarks/python/test_dropout_layernorm_bwd.py b/benchmarks/python/test_dropout_layernorm_bwd.py index 71b54f3f86b..f2094b9bbea 100644 --- a/benchmarks/python/test_dropout_layernorm_bwd.py +++ b/benchmarks/python/test_dropout_layernorm_bwd.py @@ -12,7 +12,7 @@ with_executor, ) import torch -from .global_params import generate_input_sizes, FLOAT_DTYPES, PROMOTE_DTYPES +from .global_params import generate_input_sizes, FLOAT_DTYPES, PROMOTE_DTYPES, DEFAULT_EXECUTORS from .torch_ops import dropout_layernorm @@ -191,7 +191,7 @@ def test_dropout_layernorm_bwd_nvf_benchmark( ) -@pytest.mark.parametrize("executor", ["eager", "torchcompile"]) +@pytest.mark.parametrize("executor", DEFAULT_EXECUTORS) @pytest.mark.parametrize("size", generate_input_sizes(dims=2)) @pytest.mark.parametrize("dtype", FLOAT_DTYPES) def test_dropout_layernorm_bwd_baseline_benchmark( diff --git a/benchmarks/python/test_dropout_layernorm_fwd.py b/benchmarks/python/test_dropout_layernorm_fwd.py index 78eec0cedf2..1b703c27344 100644 --- a/benchmarks/python/test_dropout_layernorm_fwd.py +++ b/benchmarks/python/test_dropout_layernorm_fwd.py @@ -11,7 +11,7 @@ with_executor, ) import torch -from .global_params import generate_input_sizes, FLOAT_DTYPES, PROMOTE_DTYPES +from .global_params import generate_input_sizes, FLOAT_DTYPES, PROMOTE_DTYPES, DEFAULT_EXECUTORS from .torch_ops import dropout_layernorm @@ -151,7 +151,7 @@ def test_dropout_layernorm_fwd_nvf_benchmark( run_benchmark(benchmark, fd.execute, inputs) -@pytest.mark.parametrize("executor", ["eager", "torchcompile"]) +@pytest.mark.parametrize("executor", DEFAULT_EXECUTORS) @pytest.mark.parametrize("size", generate_input_sizes(dims=2)) @pytest.mark.parametrize("dtype", FLOAT_DTYPES) def test_dropout_layernorm_fwd_baseline_benchmark( diff --git a/benchmarks/python/test_dropout_rmsnorm_bwd.py b/benchmarks/python/test_dropout_rmsnorm_bwd.py index 275a56e0731..a4ffe736245 100644 --- a/benchmarks/python/test_dropout_rmsnorm_bwd.py +++ b/benchmarks/python/test_dropout_rmsnorm_bwd.py @@ -12,7 +12,7 @@ with_executor, ) import torch -from .global_params import generate_input_sizes, FLOAT_DTYPES, PROMOTE_DTYPES +from .global_params import generate_input_sizes, FLOAT_DTYPES, PROMOTE_DTYPES, DEFAULT_EXECUTORS from .torch_ops import dropout_rmsnorm @@ -171,7 +171,7 @@ def test_dropout_rmsnorm_bwd_nvf_benchmark( ) -@pytest.mark.parametrize("executor", ["eager", "torchcompile"]) +@pytest.mark.parametrize("executor", DEFAULT_EXECUTORS) @pytest.mark.parametrize("size", generate_input_sizes(dims=2)) @pytest.mark.parametrize("dtype", FLOAT_DTYPES) def test_dropout_rmsnorm_bwd_baseline_benchmark( diff --git a/benchmarks/python/test_dropout_rmsnorm_fwd.py b/benchmarks/python/test_dropout_rmsnorm_fwd.py index 16b5b72f7a1..080e0309b57 100644 --- a/benchmarks/python/test_dropout_rmsnorm_fwd.py +++ b/benchmarks/python/test_dropout_rmsnorm_fwd.py @@ -11,7 +11,7 @@ with_executor, ) import torch -from .global_params import generate_input_sizes, FLOAT_DTYPES, PROMOTE_DTYPES +from .global_params import generate_input_sizes, FLOAT_DTYPES, PROMOTE_DTYPES, DEFAULT_EXECUTORS from .torch_ops import dropout_rmsnorm @@ -141,7 +141,7 @@ def test_dropout_rmsnorm_fwd_nvf_benchmark( run_benchmark(benchmark, fd.execute, [input1, input2, weights]) -@pytest.mark.parametrize("executor", ["eager", "torchcompile"]) +@pytest.mark.parametrize("executor", DEFAULT_EXECUTORS) @pytest.mark.parametrize("size", generate_input_sizes(dims=2)) @pytest.mark.parametrize("dtype", FLOAT_DTYPES) def test_dropout_rmsnorm_fwd_baseline_benchmark( diff --git a/benchmarks/python/test_gelu_bwd.py b/benchmarks/python/test_gelu_bwd.py index 27a6107cb3d..1df29eb0bbb 100644 --- a/benchmarks/python/test_gelu_bwd.py +++ b/benchmarks/python/test_gelu_bwd.py @@ -6,7 +6,7 @@ from nvfuser.pytorch_utils import torch_dtype_to_nvfuser_dtype from .core import run_benchmark, clear_dynamo_cache, unary_bwd_torch, with_executor import torch -from .global_params import generate_input_sizes, FLOAT_DTYPES, PROMOTE_DTYPES +from .global_params import generate_input_sizes, FLOAT_DTYPES, PROMOTE_DTYPES, DEFAULT_EXECUTORS import numpy as np from .torch_ops import gelu @@ -89,7 +89,7 @@ def test_gelu_bwd_nvf_benchmark( run_benchmark(benchmark, fd.execute, [inputs, grads, bias]) -@pytest.mark.parametrize("executor", ["eager", "torchcompile"]) +@pytest.mark.parametrize("executor", DEFAULT_EXECUTORS) @pytest.mark.parametrize("size", generate_input_sizes(dims=2)) @pytest.mark.parametrize("dtype", FLOAT_DTYPES) def test_gelu_bwd_baseline_benchmark( diff --git a/benchmarks/python/test_gelu_bwd_reduction.py b/benchmarks/python/test_gelu_bwd_reduction.py index 7ade02c1f04..790ce1c31c2 100644 --- a/benchmarks/python/test_gelu_bwd_reduction.py +++ b/benchmarks/python/test_gelu_bwd_reduction.py @@ -6,7 +6,7 @@ from nvfuser.pytorch_utils import torch_dtype_to_nvfuser_dtype from .core import run_benchmark, clear_dynamo_cache, with_executor import torch -from .global_params import generate_input_sizes, FLOAT_DTYPES, PROMOTE_DTYPES +from .global_params import generate_input_sizes, FLOAT_DTYPES, PROMOTE_DTYPES, DEFAULT_EXECUTORS import numpy as np diff --git a/benchmarks/python/test_gelu_fwd.py b/benchmarks/python/test_gelu_fwd.py index 3f56b857fa2..e4d7be56a70 100644 --- a/benchmarks/python/test_gelu_fwd.py +++ b/benchmarks/python/test_gelu_fwd.py @@ -6,7 +6,7 @@ from nvfuser.pytorch_utils import torch_dtype_to_nvfuser_dtype from .core import run_benchmark, clear_dynamo_cache, with_executor import torch -from .global_params import generate_input_sizes, FLOAT_DTYPES, PROMOTE_DTYPES +from .global_params import generate_input_sizes, FLOAT_DTYPES, PROMOTE_DTYPES, DEFAULT_EXECUTORS from .torch_ops import gelu @@ -64,7 +64,7 @@ def test_gelu_fwd_nvf_benchmark( run_benchmark(benchmark, fd.execute, inputs) -@pytest.mark.parametrize("executor", ["eager", "torchcompile"]) +@pytest.mark.parametrize("executor", DEFAULT_EXECUTORS) @pytest.mark.parametrize("size", generate_input_sizes(dims=2)) @pytest.mark.parametrize("dtype", FLOAT_DTYPES) def test_gelu_fwd_baseline_benchmark( diff --git a/benchmarks/python/test_groupnorm_fwd.py b/benchmarks/python/test_groupnorm_fwd.py index 5e47179ecf3..518455db7e1 100644 --- a/benchmarks/python/test_groupnorm_fwd.py +++ b/benchmarks/python/test_groupnorm_fwd.py @@ -126,7 +126,7 @@ def test_groupnorm_fwd_nvf_benchmark( run_benchmark(benchmark, fd.execute, [x, weight, bias]) -@pytest.mark.parametrize("executor", ["eager", "torchcompile", "thunder"]) +@pytest.mark.parametrize("executor", DEFAULT_EXECUTORS) @pytest.mark.parametrize("size", generate_input_sizes(dims=4)) @pytest.mark.parametrize("dtype", FLOAT_DTYPES) def test_groupnorm_fwd_baseline_benchmark( diff --git a/benchmarks/python/test_huggingface_attn_bwd.py b/benchmarks/python/test_huggingface_attn_bwd.py index ddfd33565d9..cfd98581820 100644 --- a/benchmarks/python/test_huggingface_attn_bwd.py +++ b/benchmarks/python/test_huggingface_attn_bwd.py @@ -108,7 +108,7 @@ def test_huggingface_attn_bwd_nvf_benchmark( run_benchmark(benchmark, fd.execute, [grads, attn, dropout_mask]) -@pytest.mark.parametrize("executor", ["eager", "torchcompile"]) +@pytest.mark.parametrize("executor", DEFAULT_EXECUTORS) @pytest.mark.parametrize("size", generate_attn_inputs()) @pytest.mark.parametrize("dtype", FLOAT_DTYPES) def test_huggingface_attn_bwd_baseline_benchmark( diff --git a/benchmarks/python/test_huggingface_attn_fwd.py b/benchmarks/python/test_huggingface_attn_fwd.py index 624deb2354a..db7651e9bcf 100644 --- a/benchmarks/python/test_huggingface_attn_fwd.py +++ b/benchmarks/python/test_huggingface_attn_fwd.py @@ -125,7 +125,7 @@ def test_huggingface_attn_fwd_nvf_benchmark( run_benchmark(benchmark, fd.execute, [attention_mask, inputs]) -@pytest.mark.parametrize("executor", ["eager", "torchcompile"]) +@pytest.mark.parametrize("executor", DEFAULT_EXECUTORS) @pytest.mark.parametrize("size", generate_attn_inputs()) @pytest.mark.parametrize("dtype", FLOAT_DTYPES) def test_huggingface_attn_fwd_baseline_benchmark( diff --git a/benchmarks/python/test_layernorm_bwd.py b/benchmarks/python/test_layernorm_bwd.py index 27e4c5a4b9f..4d4e033f153 100644 --- a/benchmarks/python/test_layernorm_bwd.py +++ b/benchmarks/python/test_layernorm_bwd.py @@ -6,7 +6,7 @@ from nvfuser.pytorch_utils import torch_dtype_to_nvfuser_dtype from .core import run_benchmark, clear_dynamo_cache, unary_bwd_torch, with_executor import torch -from .global_params import generate_input_sizes, FLOAT_DTYPES, PROMOTE_DTYPES +from .global_params import generate_input_sizes, FLOAT_DTYPES, PROMOTE_DTYPES, DEFAULT_EXECUTORS import numpy as np from .torch_ops import layernorm @@ -147,7 +147,7 @@ def test_layernorm_bwd_nvf_benchmark( run_benchmark(benchmark, fd.execute, [inputs, grads, mean, invstd, weights]) -@pytest.mark.parametrize("executor", ["eager", "torchcompile"]) +@pytest.mark.parametrize("executor", DEFAULT_EXECUTORS) @pytest.mark.parametrize("size", generate_input_sizes(dims=2)) @pytest.mark.parametrize("dtype", FLOAT_DTYPES) def test_layernorm_bwd_baseline_benchmark( diff --git a/benchmarks/python/test_layernorm_fwd.py b/benchmarks/python/test_layernorm_fwd.py index 1655e639f28..d732d8337bd 100644 --- a/benchmarks/python/test_layernorm_fwd.py +++ b/benchmarks/python/test_layernorm_fwd.py @@ -6,7 +6,7 @@ from nvfuser.pytorch_utils import torch_dtype_to_nvfuser_dtype from .core import run_benchmark, clear_dynamo_cache, with_executor import torch -from .global_params import generate_input_sizes, FLOAT_DTYPES, PROMOTE_DTYPES +from .global_params import generate_input_sizes, FLOAT_DTYPES, PROMOTE_DTYPES, DEFAULT_EXECUTORS import numpy as np from .torch_ops import layernorm @@ -98,7 +98,7 @@ def test_layernorm_fwd_nvf_benchmark( run_benchmark(benchmark, fd.execute, inputs) -@pytest.mark.parametrize("executor", ["eager", "torchcompile"]) +@pytest.mark.parametrize("executor", DEFAULT_EXECUTORS) @pytest.mark.parametrize("size", generate_input_sizes(dims=2)) @pytest.mark.parametrize("dtype", FLOAT_DTYPES) def test_layernorm_fwd_baseline_benchmark( diff --git a/benchmarks/python/test_nanogpt_attn_bwd.py b/benchmarks/python/test_nanogpt_attn_bwd.py index 8d1feeb446e..0da079f77df 100644 --- a/benchmarks/python/test_nanogpt_attn_bwd.py +++ b/benchmarks/python/test_nanogpt_attn_bwd.py @@ -125,7 +125,7 @@ def test_nanogpt_attn_bwd_nvf_benchmark( run_benchmark(benchmark, fd.execute, [grads, attn, dropout_mask, bias_mask]) -@pytest.mark.parametrize("executor", ["eager", "torchcompile"]) +@pytest.mark.parametrize("executor", DEFAULT_EXECUTORS) @pytest.mark.parametrize("size", generate_attn_inputs()) @pytest.mark.parametrize("dtype", FLOAT_DTYPES) def test_nanogpt_attn_bwd_baseline_benchmark( diff --git a/benchmarks/python/test_nanogpt_attn_fwd.py b/benchmarks/python/test_nanogpt_attn_fwd.py index ae55b7b3f7f..25b7f903f10 100644 --- a/benchmarks/python/test_nanogpt_attn_fwd.py +++ b/benchmarks/python/test_nanogpt_attn_fwd.py @@ -127,7 +127,7 @@ def test_nanogpt_attn_fwd_nvf_benchmark( run_benchmark(benchmark, fd.execute, [inputs, bias]) -@pytest.mark.parametrize("executor", ["eager", "torchcompile"]) +@pytest.mark.parametrize("executor", DEFAULT_EXECUTORS) @pytest.mark.parametrize("size", generate_attn_inputs()) @pytest.mark.parametrize("dtype", FLOAT_DTYPES) def test_nanogpt_attn_fwd_baseline_benchmark( diff --git a/benchmarks/python/test_pointwise_mul.py b/benchmarks/python/test_pointwise_mul.py index 3f552ff0026..0335d919cdf 100644 --- a/benchmarks/python/test_pointwise_mul.py +++ b/benchmarks/python/test_pointwise_mul.py @@ -6,7 +6,7 @@ from nvfuser.pytorch_utils import torch_dtype_to_nvfuser_dtype from .core import run_benchmark, clear_dynamo_cache, with_executor import torch -from .global_params import generate_input_sizes, FLOAT_DTYPES, PROMOTE_DTYPES +from .global_params import generate_input_sizes, FLOAT_DTYPES, PROMOTE_DTYPES, DEFAULT_EXECUTORS def pointwise_mul_fusion( @@ -50,7 +50,7 @@ def test_pointwise_mul_nvf_benchmark( run_benchmark(benchmark, fd.execute, inputs) -@pytest.mark.parametrize("executor", ["eager", "torchcompile"]) +@pytest.mark.parametrize("executor", DEFAULT_EXECUTORS) @pytest.mark.parametrize("size", generate_input_sizes(dims=2)) @pytest.mark.parametrize("dtype", FLOAT_DTYPES) def test_pointwise_mul_baseline_benchmark( diff --git a/benchmarks/python/test_reduction.py b/benchmarks/python/test_reduction.py index d24848c8f12..b6fd29a7fc4 100644 --- a/benchmarks/python/test_reduction.py +++ b/benchmarks/python/test_reduction.py @@ -6,7 +6,7 @@ from nvfuser.pytorch_utils import torch_dtype_to_nvfuser_dtype from .core import run_benchmark, clear_dynamo_cache, with_executor import torch -from .global_params import generate_input_sizes, FLOAT_DTYPES, PROMOTE_DTYPES +from .global_params import generate_input_sizes, FLOAT_DTYPES, PROMOTE_DTYPES, DEFAULT_EXECUTORS def reduction_fusion( @@ -53,7 +53,7 @@ def test_reduction_nvf_benchmark( run_benchmark(benchmark, fd.execute, inputs) -@pytest.mark.parametrize("executor", ["eager", "torchcompile"]) +@pytest.mark.parametrize("executor", DEFAULT_EXECUTORS) @pytest.mark.parametrize("size", generate_input_sizes(dims=2)) @pytest.mark.parametrize("dtype", FLOAT_DTYPES) @pytest.mark.parametrize("reduction_axis", [0, 1]) diff --git a/benchmarks/python/test_reduction_epilogue.py b/benchmarks/python/test_reduction_epilogue.py index ce5e1961d63..30f1a331f23 100644 --- a/benchmarks/python/test_reduction_epilogue.py +++ b/benchmarks/python/test_reduction_epilogue.py @@ -7,7 +7,7 @@ from nvfuser.pytorch_utils import torch_dtype_to_nvfuser_dtype from .core import run_benchmark, clear_dynamo_cache, with_executor import torch -from .global_params import generate_input_sizes, FLOAT_DTYPES, PROMOTE_DTYPES +from .global_params import generate_input_sizes, FLOAT_DTYPES, PROMOTE_DTYPES, DEFAULT_EXECUTORS # test the influence of epilogue on the performance of reduction. # current reduction scheduler only allows epilogue to be fused with outer reduction without post reduction broadcast. @@ -67,7 +67,7 @@ def test_reduction_epilogue_nvf_benchmark( run_benchmark(benchmark, fd.execute, [x, epilogue]) -@pytest.mark.parametrize("executor", ["eager", "torchcompile"]) +@pytest.mark.parametrize("executor", DEFAULT_EXECUTORS) @pytest.mark.parametrize("size", generate_input_sizes(dims=2)) @pytest.mark.parametrize("dtype", FLOAT_DTYPES) @pytest.mark.parametrize("reduction_axis", [0]) diff --git a/benchmarks/python/test_rmsnorm_bwd.py b/benchmarks/python/test_rmsnorm_bwd.py index 14832521a24..f1de2aae324 100644 --- a/benchmarks/python/test_rmsnorm_bwd.py +++ b/benchmarks/python/test_rmsnorm_bwd.py @@ -6,7 +6,7 @@ from nvfuser.pytorch_utils import torch_dtype_to_nvfuser_dtype from .core import run_benchmark, clear_dynamo_cache, unary_bwd_torch, with_executor import torch -from .global_params import generate_input_sizes, FLOAT_DTYPES, PROMOTE_DTYPES +from .global_params import generate_input_sizes, FLOAT_DTYPES, PROMOTE_DTYPES, DEFAULT_EXECUTORS import numpy as np from .torch_ops import rmsnorm @@ -113,7 +113,7 @@ def test_rmsnorm_bwd_nvf_benchmark( run_benchmark(benchmark, fd.execute, [inputs, rms_eps, grads, weights]) -@pytest.mark.parametrize("executor", ["eager", "torchcompile"]) +@pytest.mark.parametrize("executor", DEFAULT_EXECUTORS) @pytest.mark.parametrize("size", generate_input_sizes(dims=2)) @pytest.mark.parametrize("dtype", FLOAT_DTYPES) def test_rmsnorm_bwd_baseline_benchmark( diff --git a/benchmarks/python/test_rmsnorm_fwd.py b/benchmarks/python/test_rmsnorm_fwd.py index bb19ea151b7..09af5efdaa5 100644 --- a/benchmarks/python/test_rmsnorm_fwd.py +++ b/benchmarks/python/test_rmsnorm_fwd.py @@ -6,7 +6,7 @@ from nvfuser.pytorch_utils import torch_dtype_to_nvfuser_dtype from .core import run_benchmark, clear_dynamo_cache, with_executor import torch -from .global_params import generate_input_sizes, FLOAT_DTYPES, PROMOTE_DTYPES +from .global_params import generate_input_sizes, FLOAT_DTYPES, PROMOTE_DTYPES, DEFAULT_EXECUTORS import numpy as np from .torch_ops import rmsnorm @@ -81,7 +81,7 @@ def test_rmsnorm_fwd_nvf_benchmark( run_benchmark(benchmark, fd.execute, [inputs, weights]) -@pytest.mark.parametrize("executor", ["eager", "torchcompile"]) +@pytest.mark.parametrize("executor", DEFAULT_EXECUTORS) @pytest.mark.parametrize("size", generate_input_sizes(dims=2)) @pytest.mark.parametrize("dtype", FLOAT_DTYPES) def test_rmsnorm_fwd_baseline_benchmark( diff --git a/benchmarks/python/test_scale_bias_relu_bwd.py b/benchmarks/python/test_scale_bias_relu_bwd.py index 7421a89dfaa..ba369827f3b 100644 --- a/benchmarks/python/test_scale_bias_relu_bwd.py +++ b/benchmarks/python/test_scale_bias_relu_bwd.py @@ -6,7 +6,7 @@ from nvfuser.pytorch_utils import torch_dtype_to_nvfuser_dtype from .core import run_benchmark, clear_dynamo_cache, unary_bwd_torch, with_executor import torch -from .global_params import generate_input_sizes, FLOAT_DTYPES, PROMOTE_DTYPES +from .global_params import generate_input_sizes, FLOAT_DTYPES, PROMOTE_DTYPES, DEFAULT_EXECUTORS import numpy as np from .torch_ops import scale_bias_relu @@ -80,7 +80,7 @@ def test_sbr_bwd_nvf_benchmark( run_benchmark(benchmark, fd.execute, [scale, bool_mask, grads]) -@pytest.mark.parametrize("executor", ["eager", "torchcompile"]) +@pytest.mark.parametrize("executor", DEFAULT_EXECUTORS) @pytest.mark.parametrize("size", generate_input_sizes(dims=2)) @pytest.mark.parametrize("dtype", FLOAT_DTYPES) def test_sbr_bwd_baseline_benchmark( diff --git a/benchmarks/python/test_scale_bias_relu_fwd.py b/benchmarks/python/test_scale_bias_relu_fwd.py index a7231667a01..5700712924e 100644 --- a/benchmarks/python/test_scale_bias_relu_fwd.py +++ b/benchmarks/python/test_scale_bias_relu_fwd.py @@ -6,7 +6,7 @@ from nvfuser.pytorch_utils import torch_dtype_to_nvfuser_dtype from .core import run_benchmark, clear_dynamo_cache, with_executor import torch -from .global_params import generate_input_sizes, FLOAT_DTYPES, PROMOTE_DTYPES +from .global_params import generate_input_sizes, FLOAT_DTYPES, PROMOTE_DTYPES, DEFAULT_EXECUTORS import numpy as np from .torch_ops import scale_bias_relu @@ -79,7 +79,7 @@ def test_sbr_fwd_nvf_benchmark( run_benchmark(benchmark, fd.execute, [bias, scale, inputs]) -@pytest.mark.parametrize("executor", ["eager", "torchcompile"]) +@pytest.mark.parametrize("executor", DEFAULT_EXECUTORS) @pytest.mark.parametrize("size", generate_input_sizes(dims=2)) @pytest.mark.parametrize("dtype", FLOAT_DTYPES) def test_sbr_fwd_baseline_benchmark( diff --git a/benchmarks/python/test_silu_mul_bwd.py b/benchmarks/python/test_silu_mul_bwd.py index fe24989e29e..9029a29868b 100644 --- a/benchmarks/python/test_silu_mul_bwd.py +++ b/benchmarks/python/test_silu_mul_bwd.py @@ -6,7 +6,7 @@ from nvfuser.pytorch_utils import torch_dtype_to_nvfuser_dtype from .core import run_benchmark, clear_dynamo_cache, unary_bwd_torch, with_executor import torch -from .global_params import generate_input_sizes, FLOAT_DTYPES, PROMOTE_DTYPES +from .global_params import generate_input_sizes, FLOAT_DTYPES, PROMOTE_DTYPES, DEFAULT_EXECUTORS import numpy as np from .torch_ops import silu_mul @@ -80,7 +80,7 @@ def test_silu_mul_bwd_nvf_benchmark( run_benchmark(benchmark, fd.execute, [grads, x, y]) -@pytest.mark.parametrize("executor", ["eager", "torchcompile"]) +@pytest.mark.parametrize("executor", DEFAULT_EXECUTORS) @pytest.mark.parametrize("size", generate_input_sizes(dims=2)) @pytest.mark.parametrize("dtype", FLOAT_DTYPES) def test_silu_mul_bwd_baseline_benchmark( diff --git a/benchmarks/python/test_silu_mul_fwd.py b/benchmarks/python/test_silu_mul_fwd.py index 31eafe957f9..bc495891d68 100644 --- a/benchmarks/python/test_silu_mul_fwd.py +++ b/benchmarks/python/test_silu_mul_fwd.py @@ -6,7 +6,7 @@ from nvfuser.pytorch_utils import torch_dtype_to_nvfuser_dtype from .core import run_benchmark, clear_dynamo_cache, with_executor import torch -from .global_params import generate_input_sizes, FLOAT_DTYPES, PROMOTE_DTYPES +from .global_params import generate_input_sizes, FLOAT_DTYPES, PROMOTE_DTYPES, DEFAULT_EXECUTORS from .torch_ops import silu_mul @@ -53,7 +53,7 @@ def test_silu_mul_fwd_nvf_benchmark( run_benchmark(benchmark, fd.execute, inputs) -@pytest.mark.parametrize("executor", ["eager", "torchcompile"]) +@pytest.mark.parametrize("executor", DEFAULT_EXECUTORS) @pytest.mark.parametrize("size", generate_input_sizes(dims=2)) @pytest.mark.parametrize("dtype", FLOAT_DTYPES) def test_silu_mul_fwd_baseline_benchmark( diff --git a/benchmarks/python/test_softmax_bwd.py b/benchmarks/python/test_softmax_bwd.py index e0d24b4176b..07113efd392 100644 --- a/benchmarks/python/test_softmax_bwd.py +++ b/benchmarks/python/test_softmax_bwd.py @@ -6,7 +6,7 @@ from nvfuser.pytorch_utils import torch_dtype_to_nvfuser_dtype from .core import run_benchmark, clear_dynamo_cache, unary_bwd_torch, with_executor import torch -from .global_params import generate_input_sizes, FLOAT_DTYPES +from .global_params import generate_input_sizes, FLOAT_DTYPES, DEFAULT_EXECUTORS import numpy as np from .torch_ops import softmax @@ -92,7 +92,7 @@ def test_softmax_bwd_nvf_benchmark( run_benchmark(benchmark, fd.execute, inputs) -@pytest.mark.parametrize("executor", ["eager", "torchcompile"]) +@pytest.mark.parametrize("executor", DEFAULT_EXECUTORS) @pytest.mark.parametrize("size", generate_input_sizes(dims=2)) @pytest.mark.parametrize("dtype", FLOAT_DTYPES) @pytest.mark.parametrize("reduction_axis", [0, 1]) diff --git a/benchmarks/python/test_softmax_fwd.py b/benchmarks/python/test_softmax_fwd.py index f1ff881b1f6..ef304047bf3 100644 --- a/benchmarks/python/test_softmax_fwd.py +++ b/benchmarks/python/test_softmax_fwd.py @@ -6,7 +6,7 @@ from nvfuser.pytorch_utils import torch_dtype_to_nvfuser_dtype from .core import run_benchmark, clear_dynamo_cache, with_executor import torch -from .global_params import generate_input_sizes, FLOAT_DTYPES, PROMOTE_DTYPES +from .global_params import generate_input_sizes, FLOAT_DTYPES, PROMOTE_DTYPES, DEFAULT_EXECUTORS import numpy as np from .torch_ops import softmax @@ -78,7 +78,7 @@ def test_softmax_fwd_nvf_benchmark( run_benchmark(benchmark, fd.execute, inputs) -@pytest.mark.parametrize("executor", ["eager", "torchcompile"]) +@pytest.mark.parametrize("executor", DEFAULT_EXECUTORS) @pytest.mark.parametrize("size", generate_input_sizes(dims=2)) @pytest.mark.parametrize("dtype", FLOAT_DTYPES) @pytest.mark.parametrize("reduction_axis", [0, 1]) diff --git a/benchmarks/python/test_transpose.py b/benchmarks/python/test_transpose.py index 29f1aacd610..4dde1b03f87 100644 --- a/benchmarks/python/test_transpose.py +++ b/benchmarks/python/test_transpose.py @@ -79,7 +79,7 @@ def test_transpose_nvf_benchmark( run_benchmark(benchmark, fd.execute, [input1, input2]) -@pytest.mark.parametrize("executor", ["eager", "torchcompile"]) +@pytest.mark.parametrize("executor", DEFAULT_EXECUTORS) @pytest.mark.parametrize("size", generate_input_sizes(dims=3)) @pytest.mark.parametrize("dtype", FLOAT_DTYPES) @pytest.mark.parametrize("axes", [(0, 1), (0, 2), (1, 2)])