diff --git a/web/src/components/code.astro b/web/src/components/code.astro index 34f02fa914..f6b7e097ae 100644 --- a/web/src/components/code.astro +++ b/web/src/components/code.astro @@ -202,35 +202,30 @@ class FedAvg(BaseFedAvg): const jobCode_pt = ` from .cifar10_pt_fl import Net -from nvflare import FedAvg, FedJob, ScriptExecutor + +from nvflare.app_opt.pt.job_config.fed_avg import FedAvgJob +from nvflare.job_config.script_runner import ScriptRunner if __name__ == "__main__": n_clients = 2 num_rounds = 2 train_script = "cifar10_pt_fl.py" - job = FedJob(name="cifar10_pt_fedavg") - - # Define the controller workflow and send to server - controller = FedAvg( - num_clients=n_clients, + # Create FedAvg Job with initial model + job = FedAvgJob( + name="cifar10_pt_fedavg", num_rounds=num_rounds, + n_clients=n_clients, + initial_model=Net(), ) - job.to(controller, "server") - - # Define the initial global model and send to server - job.to(Net(), "server") # Add clients for i in range(n_clients): - executor = ScriptExecutor( - task_script_path=train_script, task_script_args="" - # f"--batch_size 32 --data_path /tmp/data/site-{i}" - ) - job.to(executor, f"site-{i}", gpu=0) + runner = ScriptRunner(script=train_script) + job.to(runner, f"site-{i}") # job.export_job("/tmp/nvflare/jobs/job_config") - job.simulator_run("/tmp/nvflare/jobs/workdir") + job.simulator_run("/tmp/nvflare/jobs/workdir", gpu="0") `; const runCode_pt = ` @@ -421,35 +416,29 @@ class FedAvg(BaseFedAvg): const jobCode_lt = ` from .cifar10_lightning_fl import LitNet -from nvflare import FedAvg, FedJob, ScriptExecutor +from nvflare.app_opt.pt.job_config.fed_avg import FedAvgJob +from nvflare.job_config.script_runner import ScriptRunner if __name__ == "__main__": n_clients = 2 num_rounds = 2 train_script = "cifar10_lightning_fl.py" - job = FedJob(name="cifar10_lightning_fedavg") - - # Define the controller workflow and send to server - controller = FedAvg( - num_clients=n_clients, + # Create FedAvg Job with initial model + job = FedAvgJob( + name="cifar10_lightning_fedavg", num_rounds=num_rounds, + n_clients=n_clients, + initial_model=LitNet(), ) - job.to(controller, "server") - - # Define the initial global model and send to server - job.to(LitNet(), "server") # Add clients for i in range(n_clients): - executor = ScriptExecutor( - task_script_path=train_script, task_script_args="" - # f"--batch_size 32 --data_path /tmp/data/site-{i}" - ) - job.to(executor, f"site-{i}", gpu=0) + runner = ScriptRunner(script=train_script) + job.to(runner, f"site-{i}") # job.export_job("/tmp/nvflare/jobs/job_config") - job.simulator_run("/tmp/nvflare/jobs/workdir") + job.simulator_run("/tmp/nvflare/jobs/workdir", gpu="0") `; const runCode_lt = ` @@ -583,35 +572,29 @@ class FedAvg(BaseFedAvg): const jobCode_tf = ` from .cifar10_tf_fl import TFNet -from nvflare import FedAvg, FedJob, ScriptExecutor +from nvflare.app_opt.tf.job_config.fed_avg import FedAvgJob +from nvflare.job_config.script_runner import ScriptRunner if __name__ == "__main__": n_clients = 2 num_rounds = 2 train_script = "cifar10_tf_fl.py" - job = FedJob(name="cifar10_tf_fedavg") - - # Define the controller workflow and send to server - controller = FedAvg( - num_clients=n_clients, + # Create FedAvg Job with initial model + job = FedAvgJob( + name="cifar10_tf_fedavg", num_rounds=num_rounds, + n_clients=n_clients, + initial_model=TFNet(input_shape=(None, 32, 32, 3)), ) - job.to(controller, "server") - - # Define the initial global model and send to server - job.to(TFNet(input_shape=(None, 32, 32, 3)), "server") # Add clients for i in range(n_clients): - executor = ScriptExecutor( - task_script_path=train_script, task_script_args="" - # f"--batch_size 32 --data_path /tmp/data/site-{i}" - ) - job.to(executor, f"site-{i}", gpu=0) + runner = ScriptRunner(script=train_script) + job.to(runner, f"site-{i}") # job.export_job("/tmp/nvflare/jobs/job_config") - job.simulator_run("/tmp/nvflare/jobs/workdir") + job.simulator_run("/tmp/nvflare/jobs/workdir", gpu="0") `; const runCode_tf = ` @@ -622,7 +605,7 @@ const frameworks = [ { id: "pytorch", colab_link: "https://colab.research.google.com/github/NVIDIA/NVFlare/blob/main/examples/getting_started/pt/nvflare_pt_getting_started.ipynb", - github_link: "https://github.com/NVIDIA/NVFlare/blob/main/examples/getting_started/pt/fedavg_script_executor_cifar10.py", + github_link: "https://github.com/NVIDIA/NVFlare/blob/main/examples/getting_started/pt/nvflare_pt_getting_started.ipynb", sections: [ { id: "install-pytorch", @@ -676,7 +659,7 @@ const frameworks = [ { id: "lightning", colab_link: "https://colab.research.google.com/github/NVIDIA/NVFlare/blob/main/examples/getting_started/pt/nvflare_lightning_getting_started.ipynb", - github_link: "https://github.com/NVIDIA/NVFlare/tree/main/examples/getting_started/pt/fedavg_script_executor_lightning_cifar10.py", + github_link: "https://github.com/NVIDIA/NVFlare/blob/main/examples/getting_started/pt/nvflare_lightning_getting_started.ipynb", sections: [ { id: "install-lightning", @@ -730,7 +713,7 @@ const frameworks = [ { id: "tensorflow", colab_link: "https://colab.research.google.com/github/NVIDIA/NVFlare/blob/main/examples/getting_started/tf/nvflare_tf_getting_started.ipynb", - github_link: "https://github.com/NVIDIA/NVFlare/tree/main/examples/getting_started/tf/tf_fedavg_script_executor_cifar10.py", + github_link: "https://github.com/NVIDIA/NVFlare/blob/main/examples/getting_started/tf/nvflare_tf_getting_started.ipynb", sections: [ { id: "install-tensorflow",