-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathplot_obs_sim_comparisons.R
333 lines (268 loc) · 12.3 KB
/
plot_obs_sim_comparisons.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
rm(list = ls())
##############################################################################
# Dependencies
##############################################################################
#Call the R HDF5 Library
packReq <- c("magrittr","EML", "dplyr", "ggplot2",
"purrr", "tidyr", "lubridate","RCurl", "cowplot")
#Install and load all required packages
lapply(packReq, function(x) {
print(x)
if (require(x, character.only = TRUE) == FALSE) {
install.packages(x)
library(x, character.only = TRUE)
}})
#Setup Environment
options(stringsAsFactors = F)
##############################################################################
#Workflow parameters
##############################################################################
#### Output Options ####
# 1) Base directory for all files
# 2) Base directory for output
# 3) Tvan data file path for 30 minute summary in July
user = 'wwieder'
if (user == 'wwieder') {
DirBase <- "~/Desktop/Working_files/Niwot/CLM/"
DirOutBase <- paste0(DirBase,"OBS_SIM_COMP/")
tvan_data_fp <- "~/Downloads/CLM/datav20200824T1008/data/tvan_forcing_data_precip_mods_both_towers_2007-05-11_2020-08-11.txt"
} else {
DirBase <- "~/Downloads"
DirOutBase <- paste0(DirBase,"OBS_SIM_COMP/")
tvan_data_fp <- "~/Downloads/CLM/datav20200816T1808/data/tvan_forcing_data_precip_mods_both_towers_2007-05-11_2020-08-11.txt"
}
# Simulation Name (for organizing output and naming)
# This is the same as the "case_name" from flow.sim.R
sim_name <- "clm50bgc_NWT_newPHS_lowSLA" #'clm50bgc_NWT_base
#### Input options ####
# Simulation data directory (output from flow.sim.R script)
DirSimIn = paste0(DirBase,'SIM/',sim_name)
# Observation data directory (output from flow.obs.R script)
DirObsIn = paste0(DirBase,'OBS/data')
# What vegetation community are we working with?
vegetation_com <- "FF" # Options: "FF", "DM", "MM", "WM", "SB", NA
##############################################################################
# Static workflow parameters - these are unlikely to change
##############################################################################
DirOut <- paste0(DirOutBase, sim_name)
#Check if directory exists and create if not
if(!dir.exists(DirOut)) dir.create(DirOut, recursive = TRUE)
# simulation file list
sim_file_list <- list.files(DirSimIn, full.names = TRUE)
# observation file list
obs_file_list <- list.files(DirObsIn, full.names = TRUE)
##############################################################################
# Diel plots - fast model/obs timestamp comparison
##############################################################################
# Load CLM simulation data
hlf_hrly_file <- grep("30", sim_file_list)
hlf_hr_flx.clm <- read.table(file = sim_file_list[hlf_hrly_file],
sep = "\t", header = TRUE)
# Load Obs data
hlf_hrly_file <- grep("July", obs_file_list)
hlf_hr_flx.obs <- read.table(file = obs_file_list[hlf_hrly_file],
sep = "\t", header = TRUE)
# Reformat simulation fluxes
diurnal_flx_vars <- c("RNET", "FSH", "EFLX_LH_TOT", "GPP")
hlf_hr_flx.clm <- hlf_hr_flx.clm %>%
filter(veg_com == vegetation_com) %>%
select(Hour, DoY, year, month, all_of(diurnal_flx_vars)) %>%
filter(month == 7) %>%
group_by(Hour) %>%
summarize_at(all_of(diurnal_flx_vars),
list(houravg = mean, hoursd = sd), na.rm = TRUE) %>%
mutate(ObsSim = "Sim")
##############################################################################
# Diel plots
##############################################################################
diel.plot <- hlf_hr_flx.clm %>%
select(Hour, ends_with("avg")) %>%
pivot_longer(cols = !Hour,
names_to = "Sim_diurnal_flx",
values_to = "Sim_value") %>%
left_join(hlf_hr_flx.obs %>%
select(Hour, ends_with("avg")) %>%
pivot_longer(cols = !Hour,
names_to = "Obs_diurnal_flx",
values_to = "Obs_value"),
by = c("Hour" = "Hour", "Sim_diurnal_flx" = "Obs_diurnal_flx")) %>%
rename(diurnal_flx = Sim_diurnal_flx)
diel_plot <- ggplot(data = diel.plot, aes(x = Obs_value, y = Sim_value)) +
geom_point() +
geom_abline(slope = 1, intercept = 0) +
facet_wrap(~diurnal_flx, scales = "free")
diel_plot
##############################################################################
# Load in flux data
##############################################################################
# Load CLM simulation data
diurnal_file <- grep("Diurnal", sim_file_list)
flx.clm <- read.table(file = sim_file_list[diurnal_file],
sep = "\t", header = TRUE)
# Load Obs data
diurnal_file <- grep("Diurnal", obs_file_list)
flx.obs <- read.table(file = obs_file_list[diurnal_file],
sep = "\t", header = TRUE)
##############################################################################
# Plot flux data
##############################################################################
# Combine flux data for plotting
flx.clm <- flx.clm %>%
filter(veg_com == vegetation_com) %>%
select(all_of(names(flx.obs)))
flx.plot <- bind_rows(flx.clm, flx.obs) %>%
# reorder months in order of season
mutate(MonGroup = factor(MonGroup, levels = c("DJF", "MAM", "JJA", "SON")))
plot_forcing_var <- function(x) {
#x <- "RNET"
plot.df <- flx.plot %>%
select(MonGroup, Hour, ObsSim, starts_with(x)) %>%
rename(hourly_mean := !!quo_name(paste0(x, "_houravg")),
hourly_sd := !!quo_name(paste0(x, "_hoursd")))
ylabels <- c("GPP" = expression('GPP ('~gC~m^-2~s^-1~')'),
"FSH" = expression('Sensible Heat Flux ('~W~m^-2~')'),
"EFLX_LH_TOT" = expression('Latent Heat Flux ('~W~m^-2~')'),
"RNET" = expression('Net Radiation ('~W~m^-2~')'))
ylab <- ylabels[x]
ggplot(plot.df, aes(x = Hour)) +
geom_ribbon(aes(ymin = hourly_mean - hourly_sd,
ymax = hourly_mean + hourly_sd,
fill = ObsSim), alpha = 0.5) +
geom_line(aes(y = hourly_mean, color = ObsSim)) +
scale_color_manual(values = c("black", "firebrick")) +
scale_fill_manual(values = c("black", "firebrick")) +
facet_wrap(~ MonGroup, ncol = 1, strip.position = "left") +
geom_hline(yintercept = 0, linetype = "dashed") +
ylab(ylab) +
theme_bw() +
theme(strip.background = element_rect(fill = "transparent",
color = "transparent"),
strip.placement = "outsize",
legend.position = "none")
}
plots <- map(c("RNET", "FSH", "EFLX_LH_TOT","GPP"), ~plot_forcing_var(x = .x))
names(plots) <- c("RNET", "FSH", "EFLX_LH_TOT","GPP")
flx_comp_plot <- cowplot::plot_grid(plotlist = get("plots"), ncol = 4)
cowplot::save_plot(flx_comp_plot,
filename = paste0(DirOut, "/flux_comp_plot_",vegetation_com,".png"),
base_height = 6)
##############################################################################
# Load in daily soil moisture, soil temp, and GPP data
##############################################################################
# Load CLM simulation data
daily_file <- grep("Daily", sim_file_list)
daily.clm <- read.table(file = sim_file_list[daily_file],
sep = "\t", header = TRUE)
daily.clm <- daily.clm %>%
filter(veg_com == vegetation_com) %>%
select(DoY, ObsSim, veg_com, contains("SOI"), contains("GPP"))
# Change names to reflect obs names
names(daily.clm) <- sub("TSOI", "soiltemp", names(daily.clm))
names(daily.clm) <- sub("H2OSOI", "soilmoisture", names(daily.clm))
names(daily.clm) <- sub("doyavg", "dailyavg", names(daily.clm))
names(daily.clm) <- sub("doysd", "dailysd", names(daily.clm))
# Load Observational data
daily_file <- grep("Daily", obs_file_list)
daily.obs <- read.table(file = obs_file_list[daily_file],
sep = "\t", header = TRUE)
## quick plot of all results
names(daily.obs)
ggplot(daily.obs, aes(x = DoY)) +
geom_line(aes(y = soilmoisture_upper_avg_dailyavg, color = veg_com))
daily.obs <- daily.obs %>%
select(!contains("snow_depth")) %>%
select(!contains("Tsoil")) %>% #drop 'Tsoil' observations
filter(veg_com == vegetation_com)
names(daily.obs) <- sub("_avg_", "_", names(daily.obs))
##############################################################################
# Plot soil moisture data
##############################################################################
daily.plot <- bind_rows(daily.clm, daily.obs) %>%
pivot_longer(ends_with("dailyavg"),
names_to = "MeanMetric",
values_to = "DailyMean") %>%
pivot_longer(ends_with("dailysd"),
names_to = "SDMetric",
values_to = "DailySD") %>%
mutate(MeanMetric = gsub("_dailyavg", "", MeanMetric),
SDMetric = gsub("_dailysd", "", SDMetric)) %>%
filter(MeanMetric == SDMetric) %>%
# change the order of MeanMetric for more intuitive plots
mutate(MeanMetric = factor(MeanMetric,
levels = c("GPP", "soilmoisture_upper",
"soilmoisture_lower",
"soiltemp_upper", "soiltemp_lower"))) %>%
# make a dummy date for easy plotting
mutate(dummydate = days(DoY) + ymd("2000-01-01"))
soil_moisture_plot <- ggplot(daily.plot, aes(x = dummydate)) +
geom_ribbon(aes(ymin = DailyMean - DailySD,
ymax = DailyMean + DailySD,
fill = ObsSim), alpha = 0.4) +
geom_line(aes(y = DailyMean, color = ObsSim)) +
facet_wrap(~MeanMetric, scales = "free_y", ncol = 1) +
scale_x_date(date_labels = "%b", date_breaks = "1 month") +
scale_color_manual(values = c("black", "firebrick")) +
scale_fill_manual(values = c("black", "firebrick")) +
theme_bw() +
xlab("Day of Year") + ylab("") +
ggtitle(paste0("Soil properties and GPP for ", vegetation_com, " community"))
ggsave(soil_moisture_plot,
file = paste0(DirOut, "/soil_comp_plot_", vegetation_com, ".png"))
##############################################################################
# Load in unsummarized snow depth data
##############################################################################
# load in simulations
clm_file <- grep("Unsummarized", sim_file_list)
all.clm <- read.table(file = sim_file_list[clm_file],
sep = "\t", header = TRUE)
# Summarize clm snow depth
snow_depth.clm <- all.clm %>%
select(date, SNOW_DEPTH, veg_com, ObsSim) %>%
group_by(date, veg_com) %>%
mutate(avg_snwdp = mean(SNOW_DEPTH, na.rm = TRUE),
sd_snwdp = sd(SNOW_DEPTH, na.rm = TRUE)) %>%
select(-SNOW_DEPTH) %>%
unique()
all.clm$veg_com
# Load in observations
snwdp_obs_file <- grep("snow_depth", obs_file_list)
snow_depth.obs <- read.table(file = obs_file_list[snwdp_obs_file],
sep = "\t", header = TRUE)
# Rename observational data columns to match clm data columns,
# filter by vegetation community
snow_depth.obs <- snow_depth.obs %>%
rename(avg_snwdp = avg_date_depth,
sd_snwdp = sd_date_depth) %>%
mutate(ObsSim = "Obs") %>%
#filter(veg_com == vegetation_com) %>%
select(-DoY, -data_information, -Year)
# Combine observation and sim data sets
names(snow_depth.obs)
names(snow_depth.clm)
snow_depth.plot <- bind_rows(snow_depth.clm, snow_depth.obs)
# change order for factors of veg_com
snow_depth.plot <- snow_depth.plot %>%
mutate(veg_com = factor(veg_com, levels = c('FF','DM','MM','WM','SB')))
snow_depth_plot <- ggplot(snow_depth.plot %>%
# add a very small number since geom ribbon can't handle widths of 0
mutate(sd_snwdp = ifelse(sd_snwdp == 0, 0.000000000001, sd_snwdp)),
aes(x = as.Date(date))) +
geom_ribbon(aes(ymin = (avg_snwdp - sd_snwdp),
ymax = (avg_snwdp + sd_snwdp),
group = ObsSim,
fill = ObsSim), alpha = 0.4) +
geom_line(aes(y = avg_snwdp,
group = ObsSim,
color = ObsSim)) +
facet_wrap(~veg_com, ncol = 1, scales = "free_y") +
scale_x_date(date_labels = "%Y", date_breaks = "1 year") +
scale_color_manual(values = c("black", "firebrick")) +
scale_fill_manual(values = c("black", "firebrick")) +
theme_bw() +
xlab("") + ylab("Snow Depth (cm)") +
theme(axis.text.x=element_text(angle=45,hjust=1)) +
ggtitle(paste0("Snow depth"))
ggsave(snow_depth_plot,
file = paste0(DirOut, "/snow_depth_plot.png"))
print('---- finished plotting ----')
DirOut