-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathdata_utils.py
182 lines (143 loc) · 5.7 KB
/
data_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
from __future__ import absolute_import
from __future__ import division
import re
import sys
#import nltk
import tensorflow as tf
from tensorflow.python.platform import gfile
WORD_SPLIT = re.compile(b"([.,!?\"':;)(])")
DIGIT_RE = re.compile(br"\d")
DU_RE = re.compile(b"\!")
_PAD = b"PAD"
_GO = b"GO"
_EOS = b"EOS"
_UNK = b"UNK"
_START_VOCAB = [_PAD, _GO, _EOS, _UNK]
PAD_ID = 0
GO_ID = 1
EOS_ID = 2
UNK_ID = 3
# Tokenize a sentence into a word list
def tokenizer(sentence):
sentence = DU_RE.sub(b'', sentence)
words = []
for split_sen in sentence.lower().strip().split():
words.extend(WORD_SPLIT.split(split_sen))
return [word for word in words if word]
# Form vocab map (vocab to index) according to maxsize
# Temporary combine source and target vocabulary map together
def form_vocab_mapping(filename_1, filename_2, max_size, nltk_tokenizer):
output_path = filename_1 + '.' + str(max_size) + '.mapping'
if gfile.Exists(output_path):
print('Map file has already been formed!')
else:
print('Forming mapping file according to %s and %s' % (filename_1, filename_2))
print('Max vocabulary size : %s' % max_size)
vocab = {}
with gfile.GFile(filename_1, mode = 'rb') as f_1:
with gfile.GFile(filename_2, mode = 'rb') as f_2:
f = [f_1, f_2]
counter = 0
for i, fil in enumerate(f):
print('Processing file %s' % i)
for line in fil:
counter += 1
if counter % 100000 == 0:
print(" Processing to line %s" % counter)
line = tf.compat.as_bytes(line)
tokens = nltk.word_tokenize(line) if nltk_tokenizer else tokenizer(line)
for w in tokens:
word = DIGIT_RE.sub(b"0", w)
if word in vocab:
vocab[word] += 1
else:
vocab[word] = 1
vocab_list = _START_VOCAB + sorted(vocab, key = vocab.get, reverse = True)
if len(vocab_list) > max_size:
vocab_list = vocab_list[:max_size]
with gfile.GFile(output_path, 'wb') as vocab_file:
for w in vocab_list:
vocab_file.write(w + b'\n')
# Read mapping file from map_path
# Return mapping dictionary
def read_map(map_path):
if gfile.Exists(map_path):
vocab_list = []
with gfile.GFile(map_path, mode = 'rb') as f:
vocab_list.extend(f.readlines())
vocab_list = [tf.compat.as_bytes(line).strip() for line in vocab_list]
vocab_dict = dict([(x, y) for (y, x) in enumerate(vocab_list)])
return vocab_dict, vocab_list
else:
raise ValueError("Vocabulary file %s not found!", map_path)
def convert_to_token(sentence, vocab_map, nltk_tokenizer):
if nltk_tokenizer:
words = nltk.word_tokenize(sentence)
else:
words = tokenizer(sentence)
return [vocab_map.get(DIGIT_RE.sub(b"0", w), UNK_ID) for w in words]
def file_to_token(file_path, vocab_map, nltk_tokenizer):
output_path = file_path + ".token"
if gfile.Exists(output_path):
print("Token file %s has already existed!" % output_path)
else:
print("Tokenizing data according to %s" % file_path)
with gfile.GFile(file_path, 'rb') as input_file:
with gfile.GFile(output_path, 'w') as output_file:
counter = 0
for line in input_file:
counter += 1
if counter % 100000 == 0:
print(" Tokenizing line %s" % counter)
token_ids = convert_to_token(tf.compat.as_bytes(line), vocab_map, nltk_tokenizer)
output_file.write(" ".join([str(tok) for tok in token_ids]) + '\n')
def prepare_whole_data(input_path_1, input_path_2, max_size, nltk_tokenizer = False):
form_vocab_mapping(input_path_1, input_path_2, max_size, nltk_tokenizer)
map_path = input_path_1 + '.' + str(max_size) + '.mapping'
vocab_map, _ = read_map(map_path)
file_to_token(input_path_1, vocab_map, nltk_tokenizer)
file_to_token(input_path_2, vocab_map, nltk_tokenizer)
def read_data(source_path, target_path, bucket):
data_set = [[] for _ in range(len(bucket))]
with tf.gfile.GFile(source_path, mode="r") as source_file:
with tf.gfile.GFile(target_path, mode="r") as target_file:
source, target = source_file.readline(), target_file.readline()
counter = 0
while source and target:
counter += 1
if counter % 100000 == 0:
print(" reading data line %d" % counter)
sys.stdout.flush()
source_ids = [int(x) for x in source.split()]
target_ids = [int(x) for x in target.split()]
target_ids.append(EOS_ID)
for bucket_id, (source_size, target_size) in enumerate(bucket):
if len(source_ids) < source_size and len(target_ids) < target_size:
data_set[bucket_id].append((source_ids, target_ids))
break
source, target = source_file.readline(), target_file.readline()
return data_set
# Read token data from tokenized data
def read_token_data(file_path):
token_path = file_path + '.token'
if gfile.Exists(token_path):
data_set = []
print(" Reading from file %s" % file_path)
with gfile.GFile(token_path, mode = 'r') as t_file:
counter = 0
token_file = t_file.readline()
while token_file:
counter += 1
if counter % 100000 == 0:
print(" Reading data line %s" % counter)
sys.stdout.flush()
token_ids = [int(x) for x in token_file.split()]
data_set.append(token_ids)
token_file = t_file.readline()
return data_set
else:
raise ValueError("Can not find token file %s" % token_path)
if __name__ == "__main__":
prepare_whole_data('corpus/source', 'corpus/target', 60000)
#data_set_1 = read_token_data('corpus/valid.source')
#data_set_2 = read_token_data('corpus/valid.target')