forked from PaddlePaddle/PaddleNLP
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpredict.py
431 lines (340 loc) · 15.7 KB
/
predict.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
# -*- coding: UTF-8 -*-
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import os
import sys
import random
import time
import json
from functools import partial
import numpy as np
import paddle
import paddle.nn.functional as F
import paddlenlp as ppnlp
from model import ErnieForPretraining
from paddlenlp.data import Stack, Tuple, Pad
from paddlenlp.datasets import load_dataset
from data import create_dataloader, transform_fn_dict
from data import convert_example, convert_chid_example
from evaluate import do_evaluate, do_evaluate_chid
# yapf: disable
# yapf: enable
def set_seed(seed):
"""sets random seed"""
random.seed(seed)
np.random.seed(seed)
paddle.seed(seed)
@paddle.no_grad()
def do_predict(model, tokenizer, data_loader, label_normalize_dict):
model.eval()
normed_labels = [
normalized_lable
for origin_lable, normalized_lable in label_normalize_dict.items()
]
origin_labels = [
origin_lable
for origin_lable, normalized_lable in label_normalize_dict.items()
]
label_length = len(normed_labels[0])
y_pred_labels = []
for batch in data_loader:
src_ids, token_type_ids, masked_positions = batch
max_len = src_ids.shape[1]
new_masked_positions = []
for bs_index, mask_pos in enumerate(masked_positions.numpy()):
for pos in mask_pos:
new_masked_positions.append(bs_index * max_len + pos)
new_masked_positions = paddle.to_tensor(np.array(new_masked_positions).astype('int32'))
prediction_scores = model(
input_ids=src_ids,
token_type_ids=token_type_ids,
masked_positions=new_masked_positions)
softmax_fn = paddle.nn.Softmax()
prediction_probs = softmax_fn(prediction_scores)
batch_size = len(src_ids)
vocab_size = prediction_probs.shape[1]
# prediction_probs: [batch_size, label_lenght, vocab_size]
prediction_probs = paddle.reshape(
prediction_probs, shape=[batch_size, -1, vocab_size]).numpy()
# [label_num, label_length]
label_ids = np.array(
[tokenizer(label)["input_ids"][1:-1] for label in normed_labels])
y_pred = np.ones(shape=[batch_size, len(label_ids)])
# Calculate joint distribution of candidate labels
for index in range(label_length):
y_pred *= prediction_probs[:, index, label_ids[:, index]]
# Get max probs label's index
y_pred_index = np.argmax(y_pred, axis=-1)
for index in y_pred_index:
y_pred_labels.append(origin_labels[index])
return y_pred_labels
@paddle.no_grad()
def do_predict_chid(model, tokenizer, data_loader, label_normalize_dict):
"""
FewCLUE `chid` dataset is specical when evaluate: input slots have
additional `candidate_label_ids`, so need to customize the
evaluate function.
"""
model.eval()
normed_labels = [
normalized_lable
for origin_lable, normalized_lable in label_normalize_dict.items()
]
label_length = len(normed_labels[0])
y_pred_all = []
for batch in data_loader:
src_ids, token_type_ids, masked_positions, candidate_label_ids = batch
max_len = src_ids.shape[1]
new_masked_positions = []
for bs_index, mask_pos in enumerate(masked_positions.numpy()):
for pos in mask_pos:
new_masked_positions.append(bs_index * max_len + pos)
new_masked_positions = paddle.to_tensor(np.array(new_masked_positions).astype('int32'))
prediction_scores = model(
input_ids=src_ids,
token_type_ids=token_type_ids,
masked_positions=new_masked_positions)
softmax_fn = paddle.nn.Softmax()
prediction_probs = softmax_fn(prediction_scores)
batch_size = len(src_ids)
vocab_size = prediction_probs.shape[1]
# prediction_probs: [batch_size, label_lenght, vocab_size]
prediction_probs = paddle.reshape(
prediction_probs, shape=[batch_size, -1, vocab_size]).numpy()
candidate_num = candidate_label_ids.shape[1]
# [batch_size, candidate_num(7)]
y_pred = np.ones(shape=[batch_size, candidate_num])
for label_idx in range(candidate_num):
# [bathc_size, label_length(4)]
single_candidate_label_ids = candidate_label_ids[:, label_idx, :]
# Calculate joint distribution of candidate labels
for index in range(label_length):
# [batch_size,]
slice_word_ids = single_candidate_label_ids[:, index].numpy()
batch_single_token_prob = []
for bs_index in range(batch_size):
# [1, 1]
single_token_prob = prediction_probs[
bs_index, index, slice_word_ids[bs_index]]
batch_single_token_prob.append(single_token_prob)
y_pred[:, label_idx] *= np.array(batch_single_token_prob)
# Get max probs label's index
y_pred_index = np.argmax(y_pred, axis=-1)
y_pred_all.extend(y_pred_index)
return y_pred_all
predict_file = {
"bustm": "bustm_predict.json",
"chid": "chidf_predict.json",
"cluewsc": "cluewscf_predict.json",
"csldcp": "csldcp_predict.json",
"csl": "cslf_predict.json",
"eprstmt": "eprstmt_predict.json",
"iflytek": "iflytekf_predict.json",
"ocnli": "ocnlif_predict.json",
"tnews": "tnewsf_predict.json"
}
def write_iflytek(task_name, output_file, pred_labels):
test_ds, train_few_all = load_dataset(
"fewclue", name=task_name, splits=("test", "train_few_all"))
def label2id(train_few_all):
label2id = {}
for example in train_few_all:
label = example["label_des"]
label_id = example["label"]
if label not in label2id:
label2id[label] = str(label_id)
return label2id
label2id_dict = label2id(train_few_all)
test_example = {}
with open(output_file, 'w', encoding='utf-8') as f:
for idx, example in enumerate(test_ds):
test_example["id"] = example["id"]
test_example["label"] = label2id_dict[pred_labels[idx]]
str_test_example = json.dumps(test_example) + "\n"
f.write(str_test_example)
def write_bustm(task_name, output_file, pred_labels):
test_ds = load_dataset("fewclue", name=task_name, splits=("test"))
test_example = {}
with open(output_file, 'w', encoding='utf-8') as f:
for idx, example in enumerate(test_ds):
test_example["id"] = example["id"]
test_example["label"] = pred_labels[idx]
str_test_example = json.dumps(test_example) + "\n"
f.write(str_test_example)
def write_csldcp(task_name, output_file, pred_labels):
test_ds = load_dataset("fewclue", name=task_name, splits=("test"))
test_example = {}
with open(output_file, 'w', encoding='utf-8') as f:
for idx, example in enumerate(test_ds):
test_example["id"] = example["id"]
test_example["label"] = pred_labels[idx]
str_test_example = "\"{}\": {}, \"{}\": \"{}\"".format(
"id", test_example['id'], "label", test_example["label"])
f.write("{" + str_test_example + "}\n")
def write_tnews(task_name, output_file, pred_labels):
test_ds, train_few_all = load_dataset(
"fewclue", name=task_name, splits=("test", "train_few_all"))
def label2id(train_few_all):
label2id = {}
for example in train_few_all:
label = example["label_desc"]
label_id = example["label"]
if label not in label2id:
label2id[label] = str(label_id)
return label2id
label2id_dict = label2id(train_few_all)
test_example = {}
with open(output_file, 'w', encoding='utf-8') as f:
for idx, example in enumerate(test_ds):
test_example["id"] = example["id"]
test_example["label"] = label2id_dict[pred_labels[idx]]
str_test_example = json.dumps(test_example) + "\n"
f.write(str_test_example)
def write_cluewsc(task_name, output_file, pred_labels):
test_ds = load_dataset("fewclue", name=task_name, splits=("test"))
test_example = {}
with open(output_file, 'w', encoding='utf-8') as f:
for idx, example in enumerate(test_ds):
test_example["id"] = example["id"]
test_example["label"] = pred_labels[idx]
str_test_example = "\"{}\": {}, \"{}\": \"{}\"".format(
"id", test_example['id'], "label", test_example["label"])
f.write("{" + str_test_example + "}\n")
def write_eprstmt(task_name, output_file, pred_labels):
test_ds = load_dataset("fewclue", name=task_name, splits=("test"))
test_example = {}
with open(output_file, 'w', encoding='utf-8') as f:
for idx, example in enumerate(test_ds):
test_example["id"] = example["id"]
test_example["label"] = pred_labels[idx]
str_test_example = json.dumps(test_example)
f.write(str_test_example + "\n")
def write_ocnli(task_name, output_file, pred_labels):
test_ds = load_dataset("fewclue", name=task_name, splits=("test"))
test_example = {}
with open(output_file, 'w', encoding='utf-8') as f:
for idx, example in enumerate(test_ds):
test_example["id"] = example["id"]
test_example["label"] = pred_labels[idx]
str_test_example = json.dumps(test_example)
f.write(str_test_example + "\n")
def write_csl(task_name, output_file, pred_labels):
test_ds = load_dataset("fewclue", name=task_name, splits=("test"))
test_example = {}
with open(output_file, 'w', encoding='utf-8') as f:
for idx, example in enumerate(test_ds):
test_example["id"] = example["id"]
test_example["label"] = pred_labels[idx]
str_test_example = json.dumps(test_example)
f.write(str_test_example + "\n")
def write_chid(task_name, output_file, pred_labels):
test_ds = load_dataset("fewclue", name=task_name, splits=("test"))
test_example = {}
with open(output_file, 'w', encoding='utf-8') as f:
for idx, example in enumerate(test_ds):
test_example["id"] = example["id"]
test_example["answer"] = pred_labels[idx]
str_test_example = "\"{}\": {}, \"{}\": {}".format(
"id", test_example['id'], "answer", test_example["answer"])
f.write("{" + str_test_example + "}\n")
write_fn = {
"bustm": write_bustm,
"iflytek": write_iflytek,
"csldcp": write_csldcp,
"tnews": write_tnews,
"cluewsc": write_cluewsc,
"eprstmt": write_eprstmt,
"ocnli": write_ocnli,
"csl": write_csl,
"chid": write_chid
}
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--task_name", required=True, type=str, help="The task_name to be evaluated")
parser.add_argument("--p_embedding_num", type=int, default=1, help="number of p-embedding")
parser.add_argument("--batch_size", default=32, type=int, help="Batch size per GPU/CPU for training.")
parser.add_argument("--pattern_id", default=0, type=int, help="pattern id of pet")
parser.add_argument("--max_seq_length", default=128, type=int,
help="The maximum total input sequence length after tokenization. "
"Sequences longer than this will be truncated, sequences shorter will be padded.")
parser.add_argument("--init_from_ckpt", type=str, default=None, help="The path of checkpoint to be loaded.")
parser.add_argument("--output_dir", type=str, default=None, help="The path of checkpoint to be loaded.")
parser.add_argument("--seed", type=int, default=1000, help="random seed for initialization")
parser.add_argument('--device', choices=['cpu', 'gpu'], default="gpu",
help="Select which device to train model, defaults to gpu.")
args = parser.parse_args()
paddle.set_device(args.device)
set_seed(args.seed)
label_normalize_json = os.path.join("./label_normalized",
args.task_name + ".json")
label_norm_dict = None
with open(label_normalize_json, 'r', encoding="utf-8") as f:
label_norm_dict = json.load(f)
convert_example_fn = convert_example if args.task_name != "chid" else convert_chid_example
predict_fn = do_predict if args.task_name != "chid" else do_predict_chid
# Load test_ds for FewCLUE leaderboard
test_ds = load_dataset("fewclue", name=args.task_name, splits=("test"))
# Task related transform operations, eg: numbert label -> text_label, english -> chinese
transform_fn = partial(
transform_fn_dict[args.task_name],
label_normalize_dict=label_norm_dict,
is_test=True, pattern_id = args.pattern_id)
# Some fewshot_learning strategy is defined by transform_fn
# Note: Set lazy=False to transform example inplace immediately,
# because transform_fn should only be executed only once when
# iterate multi-times for train_ds
test_ds = test_ds.map(transform_fn, lazy=False)
model = ErnieForPretraining.from_pretrained('ernie-1.0')
tokenizer = ppnlp.transformers.ErnieTokenizer.from_pretrained('ernie-1.0')
# Load parameters of best model on test_public.json of current task
if args.init_from_ckpt and os.path.isfile(args.init_from_ckpt):
state_dict = paddle.load(args.init_from_ckpt)
model.set_dict(state_dict)
print("Loaded parameters from %s" % args.init_from_ckpt)
else:
raise ValueError(
"Please set --params_path with correct pretrained model file")
if args.task_name != "chid":
# [src_ids, token_type_ids, masked_positions, masked_lm_labels]
batchify_fn = lambda samples, fn=Tuple(
Pad(axis=0, pad_val=tokenizer.pad_token_id), # src_ids
Pad(axis=0, pad_val=tokenizer.pad_token_type_id), # token_type_ids
Stack(dtype="int64"), # masked_positions
): [data for data in fn(samples)]
else:
# [src_ids, token_type_ids, masked_positions, masked_lm_labels, candidate_labels_ids]
batchify_fn = lambda samples, fn=Tuple(
Pad(axis=0, pad_val=tokenizer.pad_token_id), # src_ids
Pad(axis=0, pad_val=tokenizer.pad_token_type_id), # token_type_ids
Stack(dtype="int64"), # masked_positions
Stack(dtype="int64"), # candidate_labels_ids [candidate_num, label_length]
): [data for data in fn(samples)]
trans_func = partial(
convert_example_fn,
tokenizer=tokenizer,
max_seq_length=args.max_seq_length,
is_test=True)
test_data_loader = create_dataloader(
test_ds,
mode='eval',
batch_size=args.batch_size,
batchify_fn=batchify_fn,
trans_fn=trans_func)
y_pred_labels = predict_fn(model, tokenizer, test_data_loader,
label_norm_dict)
output_file = os.path.join(args.output_dir, predict_file[args.task_name])
if not os.path.exists(args.output_dir):
os.makedirs(args.output_dir)
write_fn[args.task_name](args.task_name, output_file, y_pred_labels)