-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtorch_CNN_state_dict.py
115 lines (93 loc) · 3.88 KB
/
torch_CNN_state_dict.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
import torch
import torch.nn as nn
import torch.optim as optim
import torch.nn.functional as F
from torch.utils.data import DataLoader, Dataset
import torchvision.datasets as datasets
import torchvision.transforms as transforms
class CNN(nn.Module):
def __init__(self, in_channels=1, num_classes=10): # in_channel means the convolutional layers (for b&w images here 1 o.w. it is 3 for RGB)
super(CNN, self).__init__()
self.conv1 = nn.Conv2d(in_channels=1, out_channels=8, kernel_size=(3,3), stride=(1,1), padding=(1,1)) # Same convolution
self.pool = nn.MaxPool2d(kernel_size=(2,2), stride=(2,2)) # Pooling layer
self.conv2 = nn.Conv2d(in_channels=8, out_channels=16, kernel_size=(3,3), stride=(1,1), padding=(1,1)) # Same Convolution
self.fc1 = nn.Linear(16*7*7, num_classes) # 16*7*7 cause we will use the pooling layer twice in forward()
# Here we defined various layers but have not implemented them yet.
def forward(self, x):
x = F.relu(self.conv1(x))
x = self.pool(x)
x = F.relu(self.conv2(x))
x = self.pool(x)
x = x.reshape(x.shape[0], -1)
x = self.fc1(x)
return x
def save_checkpoint(state, filename='my_checkpoint.pth.tar'):
print('=> Saving checkpoint')
torch.save(state, filename)
def load_checkpoint(checkpoint):
print("=> Loading Checkpoint")
model.load_state_dict(checkpoint['state_dict'])
optimizer.load_state_dict(checkpoint['optimizer_dict'])
# Hyperparameters
in_channel = 1
num_classes = 10
learning_rate = 0.0001
batch_size = 1024
num_epochs = 10
load_model = True
# Load data
train_dataset = datasets.MNIST(
root='dataset/', train=True, transform=transforms.ToTensor(), download=True)
train_loader = DataLoader(dataset=train_dataset,
batch_size=batch_size, shuffle=True)
test_dataset = datasets.MNIST(
root='dataset/', train=False, transform=transforms.ToTensor(), download=True)
test_loader = DataLoader(dataset=test_dataset,
batch_size=batch_size, shuffle=True)
# Initialize Network
model = CNN(in_channels=in_channel, num_classes=num_classes)
# Loss and Optimizer
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(model.parameters(), lr=learning_rate)
if load_model:
load_checkpoint(torch.load('my_checkpoint.pth.tar'))
# Train Network
for epoch in range(num_epochs):
losses=[]
if epoch % 3 == 0:
checkpoint = {'state_dict': model.state_dict(), 'optimizer_dict': optimizer.state_dict()}
save_checkpoint(checkpoint)
for (data, targets) in train_loader:
data = data # The data from which we need to predict thing
targets = targets # The target value
# forward part
scores = model(data) # Prediction of the model
# Loss, that is cross entropy loss which is calculated given two args: 'predicted value' &'target value'
loss = criterion(scores, targets)
losses.append(loss.item())
# Backward part
optimizer.zero_grad() # Setting the optimized GD to zero
loss.backward()
# Gradient descent or adam step
optimizer.step()
mean_loss = sum(losses)/len(losses)
print(f'Loss at epoch {epoch} was {mean_loss:.5f}')
# Checking the model accuracy:
def check_accuracy(loader, model):
if loader.dataset.train:
print('Checking accuracy on training data')
else:
print('Checking accuracy on test data')
num_correct = 0
num_samples = 0
model.eval()
with torch.no_grad():
for x, y in loader:
scores = model(x)
_, predictions = scores.max(1)
num_correct += (predictions == y).sum()
num_samples += predictions.size(0)
print(
f'Got {num_correct} / {num_samples} with accuracy {float(num_correct)/float(num_samples)*100:.2f}')
check_accuracy(train_loader, model)
check_accuracy(test_loader, model)